Service Manual

Multi-Split Type Air Conditioners
5MXS-T, 4MXL-T Series

[Applied Models]
- Inverter Pair: Heat Pump
Table of Contents

Introduction ... 1
 1. Safety Cautions .. 2
 1.1 Warnings and Cautions Regarding Safety of Workers 2
 1.2 Warnings and Cautions Regarding Safety of Users 4
 2. Icons Used ... 7
 3. Revision History ... 8

Part 1 General Information ... 9
 1. Applicable Models ... 10
 1.1 Heat Pump .. 10
 2. Functions .. 11
 2.1 RA Indoor Unit ... 11
 2.2 SA Indoor Unit ... 17
 2.3 Outdoor Unit ... 21

Part 2 Specifications ... 22
 1. Specifications .. 23
 1.1 RA Indoor Unit ... 23
 1.2 SA Indoor Unit ... 31
 1.3 Outdoor Unit .. 34

Part 3 Printed Circuit Board Connector Wiring Diagram .. 36
 1. Indoor Unit .. 37
 1.1 FTXR09/12/18TVJUW(S), CTXG09/12/18QVJUW(S) 37
 1.2 CTXS07LVJU, FTXS09/12LVJU .. 39
 1.3 FTXS15/18/24LVJU ... 41
 1.4 FDXS09/12LVJU, CDXS15/18/24LVJU .. 43
 1.5 FVXS09/12/15/18NVJU ... 45
 1.6 FDMQ09/12/15/18/24RVJU .. 47
 1.7 FFQ09/12/15/18Q2VJU .. 49
 2. Sensor Kit for FFQ Series ... 50
 2.1 BRYQ60A2W(S) .. 50
 3. Wired Remote Controller .. 51
 3.1 BRC1E73 .. 51
 4. Wireless Remote Controller Receiver for FDMQ series 52
 4.1 BRC082A43 ... 52
 5. Wireless Remote Controller Kit for FFQ Series ... 53
 5.1 BRC082A41W, BRC082A42W(S) ... 53
 6. Outdoor Unit ... 54

Part 4 Functions and Control ... 57
 1. Common Functions ... 59
 1.1 Temperature Control ... 59
 1.2 Frequency Principle .. 59
2. RA Indoor Unit Functions

- **2.1 Airflow Direction Control** ... 61
- **2.2 Fan Speed Control for Indoor Unit** ... 64
- **2.3 Program Dry Operation** ... 65
- **2.4 Automatic Cooling/Heating Changeover** ... 66
- **2.5 Thermostat Control** ... 67
- **2.6 NIGHT SET Mode** .. 68
- **2.7 ECONO Operation** ... 69
- **2.8 2-Area INTELLIGENT EYE Operation** ... 70
- **2.9 INTELLIGENT EYE Operation** .. 72
- **2.10 POWERFUL Operation** .. 73
- **2.11 Multi-Monitor Lamp/TIMER Lamp** ... 74
- **2.12 Clock Setting** .. 75
- **2.13 WEEKLY TIMER Operation** .. 76
- **2.14 Other Functions** ... 82

3. SA Indoor Unit Functions

- **3.1 Airflow Direction Control** ... 84
- **3.2 Fan Speed Control for Indoor Unit** ... 85
- **3.3 Program Dry Operation** ... 86
- **3.4 Clock and Calendar Setting (With Wired Remote Controller BRC1E73)** .. 87
- **3.5 Schedule TIMER Operation (With Wired Remote Controller BRC1E73)** .. 89
- **3.6 Setback Function (With Wired Remote Controller BRC1E73)** 93
- **3.7 Drain Pump Control** ... 94
- **3.8 Hot Start Control (In Heating Operation Only)** 96
- **3.9 Presence and Floor Sensors (Option)** ... 97
- **3.10 Other Functions** .. 100

4. Control Specification

- **4.1 Thermistor Functions** ... 102
- **4.2 Mode Hierarchy** ... 104
- **4.3 Frequency Control** .. 105
- **4.4 Controls at Mode Changing/Start-up** ... 107
- **4.5 Discharge Pipe Temperature Control** .. 109
- **4.6 Input Current Control** .. 110
- **4.7 Freeze-up Protection Control** .. 111
- **4.8 Heating Peak-cut Control** .. 113
- **4.9 Outdoor Fan Control** ... 114
- **4.10 Liquid Compression Protection Function** .. 114
- **4.11 Defrost Control** ... 114
- **4.12 Low Hz High Pressure Limit** .. 116
- **4.13 Electronic Expansion Valve Control** ... 116
- **4.14 Malfunctions** ... 121
Part 5 Remote Controller

1. Applicable Remote Controller ... 123
2. ARC466A36 .. 124
3. ARC452A21 .. 126
4. ARC452A23 .. 128
5. ARC466A21 .. 130
6. BRC944B2 Wired Remote Controller.. 132
7. BRC1E73 Wired Remote Controller... 133
8. BRC082A43 Wireless Remote Controller ... 139
9. BRC082A41W, BRC082A42W(S) Wireless Remote Controller.............. 141

Part 6 Service Diagnosis

1. General Problem Symptoms and Check Items 145
2. Troubleshooting with LED ... 146
 2.1 Indoor Unit.. 146
 2.2 Outdoor Unit... 149
3. Service Diagnosis ... 150
 3.1 ARC452 Series Wireless Remote Controller.. 150
 3.2 ARC466 Series Wireless Remote Controller.. 153
 3.3 BRC1E73 Wired Remote Controller.. 156
 3.4 BRC082A43, BRC082A41W, BRC082A42W(S) Wireless Remote Controller ... 158
4. Code Indication on Remote Controller .. 162
 4.1 RA Indoor Unit.. 162
 4.2 SA Indoor Unit ... 162
 4.3 Outdoor Unit... 163
5. Troubleshooting for RA Indoor Unit... 164
 5.1 Indoor Unit PCB Abnormality .. 164
 5.2 Freeze-up Protection Control/Heating Peak-cut Control 166
 5.3 Indoor Fan Motor or Related Abnormality... 167
 5.4 Thermistor or Related Abnormality.. 172
 5.5 Front Panel Open/Close Fault... 173
 5.6 Signal Transmission Error (Between Indoor Unit and Outdoor Unit)......... 174
 5.7 Mismatching of Indoor Unit and Outdoor Unit 177
6. Troubleshooting for SA Indoor Unit... 178
 6.1 Indoor Unit PCB Abnormality .. 178
 6.2 Drain Level Control System Abnormality... 179
 6.3 Indoor Fan Motor or Related Abnormality.. 180
 6.4 Indoor Fan PCB Abnormality.. 185
 6.5 Humidifier or Related Abnormality.. 186
 6.6 Thermistor or Related Abnormality.. 187
 6.7 Presence Sensor or Floor Sensor Abnormality...................................... 188
 6.8 Remote Controller Thermistor Abnormality.. 189
 6.9 Signal Transmission Error (Between Indoor and Outdoor Unit)............ 190
 6.10 Signal Transmission Error (Between Indoor Unit and Remote Controller) ... 192
6.11 Signal Transmission Error (Between MAIN/SUB Remote Controllers) 193
6.12 Mismatching of Indoor Unit and Outdoor Unit .. 194

7. Troubleshooting for Outdoor Unit .. 195
 7.1 Refrigerant Shortage .. 195
 7.2 Low-voltage Detection or Over-voltage Detection 198
 7.3 Wiring Error Check Unexecuted ... 200
 7.4 Unspecified Voltage (Between Indoor Unit and Outdoor Unit), Anti-icing
 Control in Other Rooms .. 201
 7.5 Anti-icing Control for Indoor Unit ... 202
 7.6 Outdoor Unit PCB Abnormality ... 204
 7.7 OL Activation (Compressor Overload) .. 205
 7.8 Compressor Lock ... 208
 7.9 DC Fan Lock .. 210
 7.10 Input Overcurrent Detection .. 212
 7.11 Four Way Valve Abnormality ... 214
 7.12 Discharge Pipe Temperature Control ... 216
 7.13 High Pressure Control in Cooling .. 217
 7.14 Compressor Sensor System Abnormality 219
 7.15 Position Sensor Abnormality ... 221
 7.16 Thermistor or Related Abnormality (Outdoor Unit) 224
 7.17 Electrical Box Temperature Rise .. 226
 7.18 Radiation Fin Temperature Rise ... 227
 7.19 Output Overcurrent Detection ... 229

8. Check .. 232
 8.1 Thermistor Resistance Check .. 232
 8.2 Indoor Fan Motor Connector Check ... 233
 8.3 Hall IC Check .. 234
 8.4 Power Supply Waveform Check ... 235
 8.5 Electronic Expansion Valve Check .. 236
 8.6 Four Way Valve Performance Check .. 237
 8.7 Inverter Unit Refrigerant System Check .. 237
 8.8 Inverter Analyzer Check .. 238
 8.9 Rotation Pulse Check on the Outdoor Unit PCB 240
 8.10 Installation Condition Check ... 240
 8.11 Discharge Pressure Check ... 241
 8.12 Outdoor Fan System Check .. 241
 8.13 Main Circuit Short Check ... 242
 8.14 Capacitor Voltage Check ... 244
 8.15 Power Module Check .. 245

Part 7 Trial Operation and Field Settings .. 246
 1. Pump Down Operation ... 247
 2. Forced Cooling Operation ... 248
 3. Wiring Error Check Function .. 249
 4. Trial Operation .. 251
 4.1 RA Indoor Unit .. 251
 4.2 SA Indoor Unit ... 253
5. Field Settings .. 256
 5.1 RA Indoor Unit .. 256
 5.2 SA Indoor Unit .. 262
 5.3 Outdoor Unit ... 274
6. Silicone Grease on Power Transistor/Diode Bridge 277

Part 8 Appendix .. 278

1. Piping Diagrams .. 279
 1.1 Indoor Unit ... 279
 1.2 Outdoor Unit .. 282
2. Wiring Diagrams .. 283
 2.1 Indoor Unit ... 283
3. Outdoor Unit .. 290
4. Operation Limit .. 292
Introduction
1. Safety Cautions

Be sure to read the following safety cautions before conducting repair work. After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates normally, and explain the cautions for operating the product to the customer.

Caution Items

The caution items are classified into ⚠️ Warning and ⚠️ Caution. The ⚠️ Warning items are especially important since death or serious injury can result if they are not followed closely. The ⚠️ Caution items can also lead to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety caution items described below.

Pictograms

⚠️ This symbol indicates an item for which caution must be exercised. The pictogram shows the item to which attention must be paid.

 Bulldozer ⚠️ This symbol indicates a prohibited action. The prohibited item or action is shown in the illustration or near the symbol.

 Bulldozer ⚠️ This symbol indicates an action that must be taken, or an instruction. The instruction is shown in the illustration or near the symbol.

1.1 Warnings and Cautions Regarding Safety of Workers

⚠️ Warning

<table>
<thead>
<tr>
<th>Warning</th>
<th>Pictogram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not store equipment in a room with fire sources (e.g., naked flames, gas appliances, electric heaters).</td>
<td>⚠️</td>
</tr>
<tr>
<td>Be sure to disconnect the power cable from the socket before disassembling equipment for repair. Working on equipment that is connected to the power supply may cause an electrical shock. If it is necessary to supply power to the equipment to conduct the repair or inspect the circuits, do not touch any electrically charged sections of the equipment.</td>
<td>⚠️</td>
</tr>
<tr>
<td>If refrigerant gas is discharged during repair work, do not touch the discharged refrigerant gas. Refrigerant gas may cause frostbite.</td>
<td>⚠️</td>
</tr>
<tr>
<td>When disconnecting the suction or discharge pipe of the compressor at the welded section, evacuate the refrigerant gas completely at a well-ventilated place first. If there is gas remaining inside the compressor, the refrigerant gas or refrigerating machine oil discharges when the pipe is disconnected, and it may cause injury.</td>
<td>⚠️</td>
</tr>
<tr>
<td>If refrigerant gas leaks during repair work, ventilate the area. Refrigerant gas may generate toxic gases when it contacts flames.</td>
<td>⚠️</td>
</tr>
</tbody>
</table>
Warning

| Be sure to discharge the capacitor completely before conducting repair work. |
| The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit. A charged capacitor may cause an electrical shock. |

| Do not turn the air conditioner on or off by plugging in or unplugging the power cable. |
| Plugging in or unplugging the power cable to operate the equipment may cause an electrical shock or fire. |

| Be sure to wear a safety helmet, gloves, and a safety belt when working in a high place (more than 2 m (6.5 ft)). |
| Insufficient safety measures may cause a fall. |

| In case of R-32 / R-410A refrigerant models, be sure to use pipes, flare nuts and tools intended for the exclusive use with the R-32 / R-410A refrigerant. |
| The use of materials for R-22 refrigerant models may cause a serious accident, such as a damage of refrigerant cycle or equipment failure. |

| Do not mix air or gas other than the specified refrigerant (R-32 / R-410A / R-22) in the refrigerant system. |
| If air enters the refrigerant system, an excessively high pressure results, causing equipment damage and injury. |

Caution

| Do not repair electrical components with wet hands. |
| Working on the equipment with wet hands may cause an electrical shock. |

| Do not clean the air conditioner with water. |
| Washing the unit with water may cause an electrical shock. |

| Be sure to provide an earth / grounding when repairing the equipment in a humid or wet place, to avoid electrical shocks. |

| Be sure to turn off the power switch and unplug the power cable when cleaning the equipment. |
| The internal fan rotates at a high speed, and may cause injury. |

| Be sure to conduct repair work with appropriate tools. |
| The use of inappropriate tools may cause injury. |
Safety Cautions

1.2 Warnings and Cautions Regarding Safety of Users

<table>
<thead>
<tr>
<th>Caution</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to check that the refrigerating cycle section has cooled down enough before conducting repair work. Working on the unit when the refrigerating cycle section is hot may cause burns.</td>
<td></td>
</tr>
<tr>
<td>Conduct welding work in a well-ventilated place. Using the welder in an enclosed room may cause oxygen deficiency.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warning</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not store the equipment in a room with fire sources (e.g., naked flames, gas appliances, electric heaters).</td>
<td></td>
</tr>
<tr>
<td>Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools may cause an electrical shock, excessive heat generation or fire.</td>
<td></td>
</tr>
<tr>
<td>If the power cable and lead wires are scratched or have deteriorated, be sure to replace them. Damaged cable and wires may cause an electrical shock, excessive heat generation or fire.</td>
<td></td>
</tr>
<tr>
<td>Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances, since it may cause an electrical shock, excessive heat generation or fire.</td>
<td></td>
</tr>
<tr>
<td>Be sure to use an exclusive power circuit for the equipment, and follow the local technical standards related to the electrical equipment, the internal wiring regulations, and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work may cause an electrical shock or fire.</td>
<td></td>
</tr>
<tr>
<td>Be sure to use the specified cable for wiring between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections may cause excessive heat generation or fire.</td>
<td></td>
</tr>
<tr>
<td>When wiring between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable. If the cover is not mounted properly, the terminal connection section may cause an electrical shock, excessive heat generation or fire.</td>
<td></td>
</tr>
<tr>
<td>Do not damage or modify the power cable. Damaged or modified power cables may cause an electrical shock or fire. Placing heavy items on the power cable, or heating or pulling the power cable may damage it.</td>
<td></td>
</tr>
</tbody>
</table>
Safety Cautions

Warning

Do not mix air or gas other than the specified refrigerant (R-32 / R-410A / R-22) in the refrigerant system.
- If air enters the refrigerant system, an excessively high pressure results, causing equipment damage and injury.

If the refrigerant gas leaks, be sure to locate the leaking point and repair it before charging the refrigerant. After charging the refrigerant, make sure that there is no leak.
- If the leaking point cannot be located and the repair work must be stopped, be sure to pump-down, and close the service valve, to prevent refrigerant gas from leaking into the room. Refrigerant gas itself is harmless, but it may generate toxic gases when it contacts flames, such as those from fan type and other heaters, stoves and ranges.

When relocating the equipment, make sure that the new installation site has sufficient strength to withstand the weight of the equipment.
- If the installation site does not have sufficient strength or the installation work is not conducted securely, the equipment may fall and cause injury.

Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet securely.
- If the plug is dusty or has a loose connection, it may cause an electrical shock or fire.

When replacing the coin battery in the remote controller, be sure to dispose of the old battery to prevent children from swallowing it.
- If a child swallows the coin battery, see a doctor immediately.

Caution

Installation of a leakage breaker is necessary in some cases depending on the conditions of the installation site, to prevent electrical shocks.

Do not install the equipment in a place where there is a possibility of combustible gas leaks.
- If combustible gas leaks and remains around the unit, it may cause a fire.

Check to see if parts and wires are mounted and connected properly, and if connections at the soldered or crimped terminals are secure.
- Improper installation and connections may cause excessive heat generation, fire or an electrical shock.

If the installation platform or frame has corroded, replace it.
- A corroded installation platform or frame may cause the unit to fall, resulting in injury.

Check the earth / grounding, and repair it if the equipment is not properly earthed / grounded.
- Improper earth / grounding may cause an electrical shock.
Be sure to measure insulation resistance after the repair, and make sure that the resistance is 1 MΩ or higher. Faulty insulation may cause an electrical shock.

Be sure to check the drainage of the indoor unit after the repair. Faulty drainage may cause water to enter the room and wet the furniture and floor.

Do not tilt the unit when removing it. The water inside the unit may spill and wet the furniture and floor.
2. Icons Used

The following icons are used to attract the attention of the reader to specific information.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Type of Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>🚨 Warning</td>
<td>Warning</td>
<td>Warning is used when there is danger of personal injury.</td>
</tr>
<tr>
<td>🚨 Caution</td>
<td>Caution</td>
<td>Caution is used when there is danger that the reader, through incorrect manipulation, may damage equipment, lose data, get an unexpected result or have to restart (part of) a procedure.</td>
</tr>
<tr>
<td>📝 Note</td>
<td>Note</td>
<td>Note provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.</td>
</tr>
<tr>
<td>📖 Reference</td>
<td>Reference</td>
<td>Reference guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.</td>
</tr>
</tbody>
</table>
3. Revision History

<table>
<thead>
<tr>
<th>Month/Year</th>
<th>Version</th>
<th>Revised contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 / 2018</td>
<td>SiUS121827E</td>
<td>First edition</td>
</tr>
</tbody>
</table>
Part 1
General Information

1. Applicable Models
 1.1 Heat Pump

2. Functions
 2.1 RA Indoor Unit
 2.2 SA Indoor Unit
 2.3 Outdoor Unit
1. Applicable Models

1.1 Heat Pump

- **Indoor Unit**
 - FTXR09TVJUW
 - FTXR09TVJUS
 - FTXR12TVJUW
 - FTXR12TVJUS
 - FTXR18TVJUW
 - FTXR18TVJUS
 - CTXG09QVJUW
 - CTXG09QVJUS
 - CTXG12QVJUW
 - CTXG12QVJUS
 - CTXG18QVJUW
 - CTXG18QVJUS
 - CTXS07LVJU
 - FTXS09LVJU
 - FTXS12LVJU
 - FTXS15LVJU
 - FTXS18LVJU
 - FTXS24LVJU

- **Outdoor Unit**
 - 5MXS48TVJU
 - 4MXL36TVJU
2. Functions

2.1 RA Indoor Unit

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>Wall Mounted (Non Duct) Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FTXR</td>
</tr>
<tr>
<td>Basic Function</td>
<td>Inverter (with inverter power control)</td>
<td>●</td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td>●</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>INTELLIGENT EYE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2-area INTELLIGENT EYE operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td>●</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic cooling/heating changeover</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Program dry operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td>●</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (inverter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit ON/OFF switch</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Temperature display</td>
<td>—</td>
</tr>
<tr>
<td>Health and Cleanliness</td>
<td>Air-purifying filer</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Titanium apatite deodorizing filter</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Longlife filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Air filter (prefilter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wipe-clean flat panel</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Washable grille</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Filter cleaning indicator</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Good-sleep cooling operation</td>
<td>—</td>
</tr>
<tr>
<td>Timer</td>
<td>WEEKLY TIMER operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>24-hour ON/OFF TIMER</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>72-hour ON/OFF TIMER</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NIGHT SET mode</td>
<td>●</td>
</tr>
<tr>
<td>Worry Free (Reliability & Durability)</td>
<td>Auto-restart (after power failure)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Multi-split/split type compatible indoor unit</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Flexible power supply correspondence</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>High ceiling application</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Either side drain (right or left)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power selection</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>°F/°C changeover R/C temperature display (factory setting: °F)</td>
<td>●</td>
</tr>
<tr>
<td>Category</td>
<td>Functions</td>
<td>Wall Mounted (Non Duct) Type</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FTXR</td>
</tr>
<tr>
<td>Remote Control</td>
<td>Remote control adaptor (normal open pulse contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Remote control adaptor (normal open contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>DIII-NET compatible (adaptor)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wireless LAN connection</td>
<td>Option</td>
</tr>
<tr>
<td>Remote Controller</td>
<td>Wireless</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wired</td>
<td>Option</td>
</tr>
</tbody>
</table>

● : Available
— : Not available
<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>L.S.P. Duct Connected Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FDXS With wired R/C</td>
</tr>
<tr>
<td>Basic Function</td>
<td>Inverter (with inverter power control)</td>
<td>●</td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td>—</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Switchable fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>INTELLIGENT EYE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2-area INTTELLIGENT EYE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td>●</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic cooling/heating changeover</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Program dry operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td>—</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (inverter)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Indoor unit ON/OFF switch</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Temperature display</td>
<td>—</td>
</tr>
<tr>
<td>Health and Cleanliness</td>
<td>Air-purifying filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Titanium apatite deodorizing filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Longlife filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Air filter (prefilter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wipe-clean flat panel</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Washable grille</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Filter cleaning indicator</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Good-sleep cooling operation</td>
<td>—</td>
</tr>
<tr>
<td>Timer</td>
<td>WEEKLY TIMER operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>24-hour ON/OFF TIMER</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>72-hour ON/OFF TIMER</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NIGHT SET mode</td>
<td>●</td>
</tr>
<tr>
<td>Worry Free (Reliability &</td>
<td>Auto-restart (after power failure)</td>
<td>●</td>
</tr>
<tr>
<td>Durability)</td>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Multi-split/split type compatible indoor unit</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Flexible power supply correspondence</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>High ceiling application</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Either side drain (right or left)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power selection</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>°F/°C changeover R/C temperature display (factory setting: °F)</td>
<td>●</td>
</tr>
<tr>
<td>Category</td>
<td>Functions</td>
<td>L.S.P. Duct Connected Type</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>FDXS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With</td>
</tr>
<tr>
<td></td>
<td></td>
<td>wired R/C</td>
</tr>
<tr>
<td>Remote Control</td>
<td>Remote control adaptor (normal open pulse contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Remote control adaptor (normal open contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>DIII-NET compatible (adaptor)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wireless LAN connection</td>
<td>—</td>
</tr>
</tbody>
</table>

- ●: Available
- —: Not available
<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>Floor Standing Type FVXS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Function</td>
<td>Inverter (with inverter power control)</td>
<td></td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td></td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>INTELLIGENT EYE operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2-area INTELLIGENT EYE operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td>●</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic cooling/heating changeover</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Program dry operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td>●</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (inverter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit ON/OFF switch</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Temperature display</td>
<td></td>
</tr>
<tr>
<td>Health and Cleanliness</td>
<td>Air-purifying filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Titanium apatite deodorizing filter</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Longlife filter</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air filter (prefilter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wipe-clean flat panel</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Washable grille</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Filter cleaning indicator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Good-sleep cooling operation</td>
<td></td>
</tr>
<tr>
<td>Timer</td>
<td>WEEKLY TIMER operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>24-hour ON/OFF TIMER</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>72-hour ON/OFF TIMER</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIGHT SET mode</td>
<td>●</td>
</tr>
<tr>
<td>Worry Free (Reliability & Durability)</td>
<td>Auto-restart (after power failure)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Multi-split/split type compatible indoor unit</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Flexible power supply correspondence</td>
<td></td>
</tr>
<tr>
<td></td>
<td>High ceiling application</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Either side drain (right or left)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power selection</td>
<td></td>
</tr>
<tr>
<td></td>
<td>°F/°C changeover R/C temperature display (factory setting: °F)</td>
<td>●</td>
</tr>
<tr>
<td>Category</td>
<td>Functions</td>
<td>Floor Standing Type FVXS</td>
</tr>
<tr>
<td>-------------------</td>
<td>--</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Remote Control</td>
<td>Remote control adaptor (normal open pulse contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Remote control adaptor (normal open contact)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>DIII-NET compatible (adaptor)</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wireless LAN connection</td>
<td>Option</td>
</tr>
<tr>
<td>Remote Controller</td>
<td>Wireless</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wired</td>
<td>—</td>
</tr>
</tbody>
</table>

● : Available
— : Not available
2.2 SA Indoor Unit

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>M.S.P. Duct Connected Type FDMQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>With wired R/C</td>
</tr>
<tr>
<td>Basic Function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inverter (with inverter power control)</td>
<td></td>
<td>●</td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Switchable fan speed (3 steps)</td>
<td>●</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2 selectable temperature sensors</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>INTELLIGENT EYE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>2-area INTELLIGENT EYE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td>●</td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic cooling/heating changeover</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Program dry operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td>●</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (inverter)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Emergency operation switch</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Temperature display</td>
<td>—</td>
</tr>
<tr>
<td>Health and Cleanliness</td>
<td>Air-purifying filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Titanium apatite deodorizing filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Silver ion anti-bacterial drain pan</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Longlife filter Option</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Air filter</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Filter cleaning indicator</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wipe-clean flat panel</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Washable grille</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Good-sleep cooling operation</td>
<td>—</td>
</tr>
<tr>
<td>Timer</td>
<td>Setpoint auto reset</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Setpoint range restriction</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Schedule TIMER operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>24-hour ON/OFF TIMER</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Count up/down ON/OFF TIMER</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Off Timer (turns unit off after set time)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>NIGHT SET mode</td>
<td>—</td>
</tr>
<tr>
<td>Worry Free (Reliability & Durability)</td>
<td>Auto-restart (after power failure)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
</tbody>
</table>
Functions

M.S.P. Duct Connected Type FDMQ

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>With wired R/C</th>
<th>With wireless R/C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexibility</td>
<td>Multi-split/split type compatible indoor unit</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Flexible power supply correspondence</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>High ceiling application</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Either side drain (right or left)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Drain pump</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power selection</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>°F/°C changeover R/C temperature display (factory setting: °F)</td>
<td>●</td>
<td>—</td>
</tr>
<tr>
<td>Remote Control</td>
<td>Remote control adaptor (normal open pulse contact)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Remote control adaptor (normal open contact)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>DIII-NET compatible (adaptor)</td>
<td>Option</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wireless LAN connection</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

- ● : Available
- — : Not available
- ★ : Receiving sound only
<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>Ceiling Mounted Type FFQ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Decoration Panel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BYFQ60B3W1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With wired R/C</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With wired R/C</td>
</tr>
<tr>
<td>Basic Function</td>
<td>Inverter (with inverter power control)</td>
<td>●</td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Individual flap control</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td>●</td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto fan speed</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Presence and floor sensor</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Draft prevention with sensor</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Automatic cooling/heating changeover</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Program dry operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Setback function</td>
<td>●</td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (inverter)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Emergency operation switch</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td>●</td>
</tr>
<tr>
<td>Health and Cleanliness</td>
<td>Air-purifying filer</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Titanium apatite deodorizing filter</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Longlife filter</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Air filter</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Filter cleaning indicator</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wipe-clean flat panel</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Washable grille</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Good-sleep cooling operation</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Timer Schedule TIMER operation</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>72-hour ON/OFF TIMER</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Off Timer (turns unit off after set time)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>NIGHT SET mode</td>
<td>●</td>
</tr>
<tr>
<td>Worry Free (Reliability &</td>
<td>Auto-restart (after power failure)</td>
<td>●</td>
</tr>
<tr>
<td>Durability)</td>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
<tr>
<td>Flexibility</td>
<td>Multi-split/split type compatible indoor unit</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Flexible power supply correspondence</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Either side drain (right or left)</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Drain pump</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>Power selection</td>
<td>●</td>
</tr>
<tr>
<td></td>
<td>°F/°C changeover R/C temperature display (factory setting: °F)</td>
<td>●</td>
</tr>
<tr>
<td>Category</td>
<td>Functions</td>
<td>Ceiling Mounted Type FFQ</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Decoration Panel BYFQ60B3W1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>With wired R/C</td>
</tr>
<tr>
<td>Remote Control</td>
<td>Remote control adaptor (normal open pulse contact)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Remote control adaptor (normal open contact)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>DIII-NET compatible (adaptor)</td>
<td>Option</td>
</tr>
<tr>
<td>Remote Controller</td>
<td>Wireless</td>
<td>Option</td>
</tr>
<tr>
<td></td>
<td>Wired</td>
<td>Option</td>
</tr>
</tbody>
</table>

- : Available
- : Not available
★ : Receiving sound only
2.3 Outdoor Unit

<table>
<thead>
<tr>
<th>Function</th>
<th>5MXS / 4MXL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inverter (with inverter power control)</td>
<td>●</td>
</tr>
<tr>
<td>Operation limit for cooling (°FDB)</td>
<td>Refer to P.292</td>
</tr>
<tr>
<td>Operation limit for heating (°FWB)</td>
<td>—</td>
</tr>
<tr>
<td>PAM control</td>
<td>●</td>
</tr>
<tr>
<td>Oval scroll compressor</td>
<td>—</td>
</tr>
<tr>
<td>Swing compressor</td>
<td>●</td>
</tr>
<tr>
<td>Rotary compressor</td>
<td>—</td>
</tr>
<tr>
<td>Reluctance DC motor</td>
<td>●</td>
</tr>
<tr>
<td>NIGHT QUIET mode</td>
<td>●</td>
</tr>
<tr>
<td>OUTDOOR UNIT QUIET operation</td>
<td>●</td>
</tr>
<tr>
<td>Quick warming function</td>
<td>●</td>
</tr>
<tr>
<td>Automatic defrosting</td>
<td>●</td>
</tr>
<tr>
<td>Defrost learning control</td>
<td>●</td>
</tr>
<tr>
<td>Priority room setting</td>
<td>●</td>
</tr>
<tr>
<td>COOL/HEAT mode lock</td>
<td>●</td>
</tr>
<tr>
<td>Auto-restart (after power failure)</td>
<td>—</td>
</tr>
<tr>
<td>Self-diagnosis (R/C, LED)</td>
<td>●</td>
</tr>
<tr>
<td>Wiring error check function</td>
<td>●</td>
</tr>
<tr>
<td>Anti-corrosion treatment of outdoor heat exchanger</td>
<td>●</td>
</tr>
<tr>
<td>Drain-pan heater control by microcomputer</td>
<td>●</td>
</tr>
<tr>
<td>Flexible power supply correspondence</td>
<td>—</td>
</tr>
<tr>
<td>Chargeless</td>
<td>131.6 ft (40 m)</td>
</tr>
<tr>
<td>Power selection</td>
<td>—</td>
</tr>
<tr>
<td>Low temp. cooling operation (−15°C) (5°F)</td>
<td>—</td>
</tr>
</tbody>
</table>

● : Available
— : Not available
1. Specifications

1.1 RA Indoor Unit

Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>FTXR09TVJUW</th>
<th>FTXR09TVJUSW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td>9 kBtu/h Class</td>
<td>9 kBtu/h Class</td>
</tr>
<tr>
<td>Front Panel Color</td>
<td>White</td>
<td>Silver</td>
</tr>
<tr>
<td>Airflow Rates (CFM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>272 (7.7)</td>
<td>346 (9.8)</td>
</tr>
<tr>
<td>M</td>
<td>208 (5.9)</td>
<td>258 (7.3)</td>
</tr>
<tr>
<td>L</td>
<td>162 (4.6)</td>
<td>201 (5.7)</td>
</tr>
<tr>
<td>SL</td>
<td>134 (3.8)</td>
<td>117 (3.3)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Cross Flow Fan</td>
<td>Cross Flow Fan</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Speed Steps</td>
<td>5 Steps, Quiet, Auto</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
<tr>
<td>Air Direction Control</td>
<td>Right, Left, Horizontal, Downward</td>
<td>Right, Left, Horizontal, Downward</td>
</tr>
<tr>
<td>Air Filter</td>
<td>Removable, Washable, Mildew Proof</td>
<td>Removable, Washable, Mildew Proof</td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td>Microcomputer Control</td>
</tr>
<tr>
<td>Dimensions (H x W x D) (in.)</td>
<td>11-15/16 x 39-5/16 x 8-3/8 (303 x 998 x 212)</td>
<td>11-15/16 x 39-5/16 x 8-3/8 (303 x 998 x 212)</td>
</tr>
<tr>
<td>Weight (Mass) (Lbs)</td>
<td>36 (16)</td>
<td>36 (16)</td>
</tr>
<tr>
<td>Sound Pressure Level (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid (in.)(φ)</td>
<td>1/4 (φ 6.4)</td>
<td>1/4 (φ 6.4)</td>
</tr>
<tr>
<td>Gas (in.)(φ)</td>
<td>3/8 (φ 9.5)</td>
<td>3/8 (φ 9.5)</td>
</tr>
<tr>
<td>Drain (in.)(φ)</td>
<td>11/16 (φ 18)</td>
<td>11/16 (φ 18)</td>
</tr>
<tr>
<td>Drawing No.</td>
<td>3D120044</td>
<td>3D120044</td>
</tr>
<tr>
<td>Notes</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
</tr>
</tbody>
</table>

Model Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>FTXR12TVJUW</th>
<th>FTXR12TVJUUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td>12 kBtu/h Class</td>
<td>12 kBtu/h Class</td>
</tr>
<tr>
<td>Front Panel Color</td>
<td>White</td>
<td>Silver</td>
</tr>
<tr>
<td>Airflow Rates (CFM)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>335 (9.5)</td>
<td>395 (11.2)</td>
</tr>
<tr>
<td>M</td>
<td>219 (6.2)</td>
<td>290 (8.2)</td>
</tr>
<tr>
<td>L</td>
<td>169 (4.6)</td>
<td>226 (6.4)</td>
</tr>
<tr>
<td>SL</td>
<td>131 (3.7)</td>
<td>131 (3.7)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Cross Flow Fan</td>
<td>Cross Flow Fan</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Speed Steps</td>
<td>5 Steps, Quiet, Auto</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
<tr>
<td>Air Direction Control</td>
<td>Right, Left, Horizontal, Downward</td>
<td>Right, Left, Horizontal, Downward</td>
</tr>
<tr>
<td>Air Filter</td>
<td>Removable, Washable, Mildew Proof</td>
<td>Removable, Washable, Mildew Proof</td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
<td>W</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td>Microcomputer Control</td>
</tr>
<tr>
<td>Dimensions (H x W x D) (in.)</td>
<td>11-15/16 x 39-5/16 x 8-3/8 (303 x 998 x 212)</td>
<td>11-15/16 x 39-5/16 x 8-3/8 (303 x 998 x 212)</td>
</tr>
<tr>
<td>Weight (Mass) (Lbs)</td>
<td>36 (16)</td>
<td>36 (16)</td>
</tr>
<tr>
<td>Sound Pressure Level (dB)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid (in.)(φ)</td>
<td>1/4 (φ 6.4)</td>
<td>1/4 (φ 6.4)</td>
</tr>
<tr>
<td>Gas (in.)(φ)</td>
<td>3/8 (φ 9.5)</td>
<td>3/8 (φ 9.5)</td>
</tr>
<tr>
<td>Drain (in.)(φ)</td>
<td>11/16 (φ 18)</td>
<td>11/16 (φ 18)</td>
</tr>
<tr>
<td>Drawing No.</td>
<td>3D120044</td>
<td>3D120044</td>
</tr>
<tr>
<td>Notes</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
</tr>
</tbody>
</table>

Conversion Formulas

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
Specifications

Model FTXR18TVJUW

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
<th>1 φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model FTXR18TVJUS

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
<th>1 φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rated Capacity

| Rated Capacity | 18 kBtu/h Class | 18 kBtu/h Class |

Cooling

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M</th>
<th>L</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>350 (9.9)</td>
<td>275 (7.8)</td>
<td>226 (6.4)</td>
<td>208 (5.9)</td>
<td></td>
</tr>
</tbody>
</table>

Heating

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M</th>
<th>L</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>413 (11.7)</td>
<td>332 (9.4)</td>
<td>275 (7.8)</td>
<td>208 (5.9)</td>
<td></td>
</tr>
</tbody>
</table>

Fan

| Type | Cross Flow Fan |

Motor Output

| W | 29 | 29 |

Speed

| Steps | 5 Steps, Quiet, Auto |

Air Direction Control

| Right, Left, Horizontal, Downward |

Air Filter

| Removable, Washable, Mildew Proof |

Running Current (Rated)

| A | 0.14 - 0.14 | 0.21 - 0.21 | 0.14 - 0.14 | 0.21 - 0.21 |

Power Consumption (Rated)

| W | 28 - 28 | 42 - 42 | 28 - 28 | 42 - 42 |

Power Factor (Rated)

| % | 96.1 - 87.0 | 96.2 - 87.0 | 96.1 - 87.0 | 96.2 - 87.0 |

Temperature Control

| Microcomputer Control |

Dimensions (H × W × D)

| in. (mm) | 11-15/16 × 39-5/16 × 8-3/8 (303 × 998 × 212) |

Weight (Mass)

| Lbs (kg) | 27 (12) |

Gross Weight (Gross Mass)

| Lbs (kg) | 36 (16) |

Sound Power Level

| dB(A) | 46 / 40 / 35 / 30 | 47 / 41 / 35 / 30 | 46 / 40 / 35 / 30 | 47 / 41 / 35 / 30 |

Heat Insulation

| Both Liquid and Gas Pipes |

Piping Connection

Liquid in. (mm)	φ 1/4 (φ 6.4)
Gas in. (mm)	φ 1/2 (φ 12.7)
Drain in. (mm)	φ 1/16 (φ 1.6)

Drawing No.

| 3D120048A |

Notes

1. SL: The quiet fan level of the airflow rate setting.

Model CTXG09QVJUW

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>60 Hz, 208 - 230 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Model CTXG09QVJUS

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply Phase</td>
<td>60 Hz, 208 - 230 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Rated Capacity

| Rated Capacity | 9 kBtu/h Class | 9 kBtu/h Class |

Cooling

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M</th>
<th>L</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>279 (7.9)</td>
<td>212 (6.0)</td>
<td>152 (4.6)</td>
<td>134 (3.8)</td>
<td></td>
</tr>
</tbody>
</table>

Heating

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M</th>
<th>L</th>
<th>SL</th>
</tr>
</thead>
<tbody>
<tr>
<td>367 (10.4)</td>
<td>265 (7.5)</td>
<td>205 (5.8)</td>
<td>117 (3.3)</td>
<td></td>
</tr>
</tbody>
</table>

Fan

| Type | Cross Flow Fan |

Motor Output

| W | 29 | 29 |

Speed

| Steps | 5 Steps, Quiet, Auto |

Air Direction Control

| Right, Left, Horizontal, Downward |

Air Filter

| Removable, Washable, Mildew Proof |

Running Current (Rated)

| A | 0.07 - 0.07 | 0.13 - 0.12 | 0.07 - 0.07 | 0.13 - 0.12 |

Power Consumption (Rated)

| W | 13 - 13 | 26 - 26 | 13 - 13 | 26 - 26 |

Power Factor (Rated)

| % | 89.2 - 94.2 | 89.2 - 94.2 |

Temperature Control

| Microcomputer Control |

Dimensions (H × W × D)

| in. (mm) | 11-15/16 × 39-5/16 × 8-3/8 (303 × 998 × 212) |

Weight (Mass)

| Lbs (kg) | 27 (12) |

Gross Weight (Gross Mass)

| Lbs (kg) | 36 (16) |

Sound Power Level

| dB(A) | 38 / 32 / 25 / 21 | 41 / 34 / 28 / 21 | 38 / 32 / 25 / 21 | 41 / 34 / 28 / 21 |

Heat Insulation

| Both Liquid and Gas Pipes |

Piping Connection

Liquid in. (mm)	φ 1/4 (φ 6.4)
Gas in. (mm)	φ 3/8 (φ 9.5)
Drain in. (mm)	φ 1/16 (φ 1.6)

Drawing No.

| 3D105562 |

Notes

1. SL: The quiet fan level of the airflow rate setting.

Conversion Formulae

- \(\text{kcal/h} = \text{kW} \times 860 \)
- \(\text{Btu/h} = \text{kW} \times 3412 \)
- \(\text{cfm} = \frac{m^3}{\text{min}} \times 35.3 \)
Specifications

Model CTGX12QVJUW CTGX12QVJUS

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Capacity</th>
<th>12 kBtu/h Class</th>
<th>12 kBtu/h Class</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Front Panel Color</th>
<th>White</th>
<th>Silver</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M (cfm (m³/min))</th>
<th>L (cfm (m³/min))</th>
<th>SL (cfm (m³/min))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>353 (10.0)</td>
<td>300 (8.5)</td>
<td>230 (6.5)</td>
<td>162 (4.6)</td>
</tr>
<tr>
<td>M</td>
<td>353 (10.0)</td>
<td>300 (8.5)</td>
<td>230 (6.5)</td>
<td>162 (4.6)</td>
</tr>
<tr>
<td>L</td>
<td>300 (8.5)</td>
<td>230 (6.5)</td>
<td>162 (4.6)</td>
<td>162 (4.6)</td>
</tr>
<tr>
<td>SL</td>
<td>162 (4.6)</td>
<td>162 (4.6)</td>
<td>162 (4.6)</td>
<td>162 (4.6)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan Type</th>
<th>Cross Flow Fan</th>
<th>Cross Flow Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps, Quiet, Auto</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Direction Control</th>
<th>Right, Left, Horizontal, Downward</th>
<th>Right, Left, Horizontal, Downward</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Air Filter</th>
<th>Removable, Washable, Mildew Proof</th>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Running Current (Rated)</th>
<th>A</th>
<th>0.13 - 0.12</th>
<th>0.19 - 0.17</th>
<th>0.13 - 0.12</th>
<th>0.19 - 0.17</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Consumption (Rated)</th>
<th>W</th>
<th>28 - 26</th>
<th>38 - 38</th>
<th>28 - 26</th>
<th>38 - 38</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Factor (Rated) %</th>
<th>96.1 - 97.1</th>
<th>96.1 - 97.1</th>
<th>96.1 - 97.1</th>
<th>96.1 - 97.1</th>
</tr>
</thead>
</table>

|---|---|

Model CTGX18QVJUW CTGX18QVJUS

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Capacity</th>
<th>18 kBtu/h Class</th>
<th>18 kBtu/h Class</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Front Panel Color</th>
<th>White</th>
<th>Silver</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm (m³/min))</th>
<th>M (cfm (m³/min))</th>
<th>L (cfm (m³/min))</th>
<th>SL (cfm (m³/min))</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>364 (10.3)</td>
<td>286 (8.1)</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
</tr>
<tr>
<td>M</td>
<td>364 (10.3)</td>
<td>286 (8.1)</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
</tr>
<tr>
<td>L</td>
<td>286 (8.1)</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
<td>219 (6.2)</td>
</tr>
<tr>
<td>SL</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
<td>219 (6.2)</td>
<td>219 (6.2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fan Type</th>
<th>Cross Flow Fan</th>
<th>Cross Flow Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>29</td>
<td>29</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps, Quiet, Auto</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Direction Control</th>
<th>Right, Left, Horizontal, Downward</th>
<th>Right, Left, Horizontal, Downward</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Air Filter</th>
<th>Removable, Washable, Mildew Proof</th>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Running Current (Rated)</th>
<th>A</th>
<th>0.14 - 0.14</th>
<th>0.21 - 0.21</th>
<th>0.14 - 0.14</th>
<th>0.21 - 0.21</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Consumption (Rated)</th>
<th>W</th>
<th>28 - 28</th>
<th>42 - 42</th>
<th>28 - 28</th>
<th>42 - 42</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Power Factor (Rated) %</th>
<th>96.2 - 87.0</th>
<th>96.2 - 87.0</th>
<th>96.2 - 87.0</th>
<th>96.2 - 87.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Temperature Control</th>
<th>Microcomputer Control</th>
<th>Microcomputer Control</th>
</tr>
</thead>
</table>

|-------------------|-----------------------------------|-----------------------------------|

<table>
<thead>
<tr>
<th>Weight (Mass) Lbs (kg)</th>
<th>27 (12)</th>
<th>27 (12)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Gross Weight (Gross Mass) Lbs (kg)</th>
<th>36 (16)</th>
<th>36 (16)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sound Pressure Level dB(A)</th>
<th>45 / 34 / 26 / 22</th>
<th>45 / 37 / 29 / 22</th>
<th>45 / 34 / 26 / 22</th>
<th>45 / 37 / 29 / 22</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sound Power Level dB</th>
<th>—</th>
<th>—</th>
<th>—</th>
<th>—</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Heat Insulation</th>
<th>Both Liquid and Gas Pipes</th>
<th>Both Liquid and Gas Pipes</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Piping Connection</th>
<th>Liquid</th>
<th>Gas</th>
<th>Drain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid in. (mm)</td>
<td>ø 1/4 (ø 6.4)</td>
<td>ø 3/8 (ø 9.5)</td>
<td>ø 11/16 (ø 18)</td>
</tr>
<tr>
<td>Gas in. (mm)</td>
<td>ø 1/2 (ø 12.7)</td>
<td>ø 3/8 (ø 9.5)</td>
<td>ø 11/16 (ø 18)</td>
</tr>
<tr>
<td>Drain in. (mm)</td>
<td>ø 11/16 (ø 18)</td>
<td>ø 3/8 (ø 9.5)</td>
<td>ø 11/16 (ø 18)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Drawing No.</th>
<th>3D105563</th>
<th>3D105566</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Notes</th>
<th>1. SL: The quiet fan level of the airflow rate setting.</th>
<th>1. SL: The quiet fan level of the airflow rate setting.</th>
</tr>
</thead>
</table>

Conversion Formulae

- \(\text{kcal/h} = \text{kW} \times 860\)
- \(\text{Btu/h} = \text{kW} \times 3412\)
- \(\text{cfm} = \frac{\text{m}^3}{\text{min}} \times 35.3\)
Specifications

Model: CTXS07LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
<th>208 - 230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td></td>
<td>7 kBtu/h Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel Color</td>
<td></td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airflow Rates

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>H (cfm/m³/min)</th>
<th>M (cfm/m³/min)</th>
<th>L (cfm/m³/min)</th>
<th>SL (cfm/m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>332 (9.4)</td>
<td>261 (7.4)</td>
<td>194 (5.5)</td>
<td>145 (4.1)</td>
</tr>
<tr>
<td>Heating</td>
<td>350 (9.9)</td>
<td>290 (8.2)</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
</tr>
</tbody>
</table>

Fan

<table>
<thead>
<tr>
<th>Type</th>
<th>Cross Flow Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>23</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
</tbody>
</table>

Air Direction Control

<table>
<thead>
<tr>
<th>Right, Left, Horizontal, Downward</th>
</tr>
</thead>
</table>

Air Filter

<table>
<thead>
<tr>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
</table>

Running Current (Rated)

<table>
<thead>
<tr>
<th>A (Watt)</th>
<th>0.09 - 0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.11 - 0.10</td>
</tr>
<tr>
<td></td>
<td>0.13 - 0.12</td>
</tr>
<tr>
<td></td>
<td>0.14 - 0.13</td>
</tr>
</tbody>
</table>

Power Consumption (Rated)

<table>
<thead>
<tr>
<th>W (Watt)</th>
<th>18 - 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21 - 21</td>
</tr>
</tbody>
</table>

Power Factor (Rated)

<table>
<thead>
<tr>
<th>%</th>
<th>96.2 - 97.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.8 - 91.3</td>
</tr>
</tbody>
</table>

Temperature Control

<table>
<thead>
<tr>
<th>Microcomputer Control</th>
</tr>
</thead>
</table>

Dimensions (H × W × D)

| 11-5/8 × 31-1/2 × 8-7/16 (295 × 800 × 215) |

Weight (Mass)

| 20 (Lbs) |

Gross Weight (Gross Mass)

| 29 (Lbs) |

Sound Pressure Level

<table>
<thead>
<tr>
<th>H / M / L / SL dB(A)</th>
<th>38 / 32 / 25 / 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Power Level</td>
<td>54</td>
</tr>
</tbody>
</table>

Heat Insulation

| Both Liquid and Gas Pipes |

Piping Connection

<table>
<thead>
<tr>
<th>Liquid in. (mm)</th>
<th>ø 1/4 (ø 6.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas in. (mm)</td>
<td>ø 3/8 (ø 9.5)</td>
</tr>
<tr>
<td>Drain in. (mm)</td>
<td>ø 5/8 (ø 16.0)</td>
</tr>
</tbody>
</table>

Drawing No.

| 3D075490 |

Notes

1. SL: The quiet fan level of the airflow rate setting.

Model: FTXS09LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
<th>208 - 230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td></td>
<td>9 kBtu/h Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel Color</td>
<td></td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airflow Rates

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>H (cfm/m³/min)</th>
<th>M (cfm/m³/min)</th>
<th>L (cfm/m³/min)</th>
<th>SL (cfm/m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>381 (10.8)</td>
<td>279 (7.9)</td>
<td>194 (5.5)</td>
<td>145 (4.1)</td>
</tr>
<tr>
<td>Heating</td>
<td>420 (11.9)</td>
<td>321 (9.1)</td>
<td>233 (6.6)</td>
<td>219 (6.2)</td>
</tr>
</tbody>
</table>

Fan

<table>
<thead>
<tr>
<th>Type</th>
<th>Cross Flow Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>23</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
</tbody>
</table>

Air Direction Control

<table>
<thead>
<tr>
<th>Right, Left, Horizontal, Downward</th>
</tr>
</thead>
</table>

Air Filter

<table>
<thead>
<tr>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
</table>

Running Current (Rated)

<table>
<thead>
<tr>
<th>A (Watt)</th>
<th>0.09 - 0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.11 - 0.10</td>
</tr>
<tr>
<td></td>
<td>0.13 - 0.12</td>
</tr>
<tr>
<td></td>
<td>0.14 - 0.13</td>
</tr>
</tbody>
</table>

Power Consumption (Rated)

<table>
<thead>
<tr>
<th>W (Watt)</th>
<th>18 - 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21 - 21</td>
</tr>
</tbody>
</table>

Power Factor (Rated)

<table>
<thead>
<tr>
<th>%</th>
<th>96.2 - 97.8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>91.8 - 91.3</td>
</tr>
</tbody>
</table>

Temperature Control

<table>
<thead>
<tr>
<th>Microcomputer Control</th>
</tr>
</thead>
</table>

Dimensions (H × W × D)

| 11-5/8 × 31-1/2 × 8-7/16 (295 × 800 × 215) |

Weight (Mass)

| 20 (Lbs) |

Gross Weight (Gross Mass)

| 29 (Lbs) |

Sound Pressure Level

<table>
<thead>
<tr>
<th>H / M / L / SL dB(A)</th>
<th>41 / 33 / 25 / 22</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Power Level</td>
<td>57</td>
</tr>
</tbody>
</table>

Heat Insulation

| Both Liquid and Gas Pipes |

Piping Connection

<table>
<thead>
<tr>
<th>Liquid in. (mm)</th>
<th>ø 1/4 (ø 6.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas in. (mm)</td>
<td>ø 3/8 (ø 9.5)</td>
</tr>
<tr>
<td>Drain in. (mm)</td>
<td>ø 5/8 (ø 16.0)</td>
</tr>
</tbody>
</table>

Drawing No.

| 3D075491A |

Notes

1. SL: The quiet fan level of the airflow rate setting.

Model: FTXS12LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>Hz, V</th>
<th>1 φ</th>
<th>208 - 230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td></td>
<td>12 kBtu/h Class</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Front Panel Color</td>
<td></td>
<td>White</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airflow Rates

<table>
<thead>
<tr>
<th>Flow Type</th>
<th>H (cfm/m³/min)</th>
<th>M (cfm/m³/min)</th>
<th>L (cfm/m³/min)</th>
<th>SL (cfm/m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>403 (11.4)</td>
<td>307 (8.7)</td>
<td>205 (5.8)</td>
<td>155 (4.4)</td>
</tr>
<tr>
<td>Heating</td>
<td>438 (12.4)</td>
<td>335 (9.5)</td>
<td>240 (6.8)</td>
<td>192 (5.6)</td>
</tr>
</tbody>
</table>

Fan

<table>
<thead>
<tr>
<th>Type</th>
<th>Cross Flow Fan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>23</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps, Quiet, Auto</td>
</tr>
</tbody>
</table>

Air Direction Control

<table>
<thead>
<tr>
<th>Right, Left, Horizontal, Downward</th>
</tr>
</thead>
</table>

Air Filter

<table>
<thead>
<tr>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
</table>

Running Current (Rated)

<table>
<thead>
<tr>
<th>A (Watt)</th>
<th>0.09 - 0.08</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.11 - 0.10</td>
</tr>
<tr>
<td></td>
<td>0.13 - 0.12</td>
</tr>
<tr>
<td></td>
<td>0.14 - 0.13</td>
</tr>
</tbody>
</table>

Power Consumption (Rated)

<table>
<thead>
<tr>
<th>W (Watt)</th>
<th>18 - 18</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21 - 21</td>
</tr>
</tbody>
</table>

Power Factor (Rated)

<table>
<thead>
<tr>
<th>%</th>
<th>96.2 - 94.2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>96.2 - 93.6</td>
</tr>
</tbody>
</table>

Temperature Control

<table>
<thead>
<tr>
<th>Microcomputer Control</th>
</tr>
</thead>
</table>

Dimensions (H × W × D)

| 11-5/8 × 31-1/2 × 8-7/16 (295 × 800 × 215) |

Weight (Mass)

| 20 (Lbs) |

Gross Weight (Gross Mass)

| 22 (Lbs) |

Sound Pressure Level

<table>
<thead>
<tr>
<th>H / M / L / SL dB(A)</th>
<th>45 / 37 / 29 / 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sound Power Level</td>
<td>58</td>
</tr>
</tbody>
</table>

Heat Insulation

| Both Liquid and Gas Pipes |

Piping Connection

<table>
<thead>
<tr>
<th>Liquid in. (mm)</th>
<th>ø 1/4 (ø 6.4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gas in. (mm)</td>
<td>ø 3/8 (ø 9.5)</td>
</tr>
<tr>
<td>Drain in. (mm)</td>
<td>ø 5/8 (ø 16.0)</td>
</tr>
</tbody>
</table>

Drawing No.

| 3D075492A |

Notes

1. SL: The quiet fan level of the airflow rate setting.

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
Specifications

Model: FTXS15LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Capacity</th>
<th>15 kBtu/h Class</th>
<th>18 kBtu/h Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel Color</td>
<td>White</td>
<td>White</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm)</th>
<th>M (cfm)</th>
<th>L (cfm)</th>
<th>SL (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>568 (16.1)</td>
<td>505 (14.3)</td>
<td>484 (13.7)</td>
<td>470 (13.5)</td>
</tr>
<tr>
<td>Heating</td>
<td>593 (16.8)</td>
<td>515 (14.3)</td>
<td>484 (13.7)</td>
<td>470 (13.5)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Filter</th>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Current (Rated)</td>
<td>0.31 - 0.29</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
</tr>
<tr>
<td>Dimensions</td>
<td>in. (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid</td>
</tr>
<tr>
<td>Gas</td>
<td>φ 12.7</td>
</tr>
<tr>
<td>Drain</td>
<td>φ 16</td>
</tr>
<tr>
<td>Sound Power Level</td>
<td>dB</td>
</tr>
</tbody>
</table>

Model: FTXS18LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Capacity</th>
<th>18 kBtu/h Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel Color</td>
<td>White</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm)</th>
<th>M (cfm)</th>
<th>L (cfm)</th>
<th>SL (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>583 (16.5)</td>
<td>484 (13.7)</td>
<td>431 (12.2)</td>
<td>470 (13.5)</td>
</tr>
<tr>
<td>Heating</td>
<td>625 (17.7)</td>
<td>526 (14.9)</td>
<td>399 (11.3)</td>
<td>505 (14.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Filter</th>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Current (Rated)</td>
<td>0.32 - 0.30</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
</tr>
<tr>
<td>Dimensions</td>
<td>in. (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid</td>
</tr>
<tr>
<td>Gas</td>
<td>φ 12.7</td>
</tr>
<tr>
<td>Drain</td>
<td>φ 16</td>
</tr>
<tr>
<td>Sound Power Level</td>
<td>dB</td>
</tr>
</tbody>
</table>

Model: FTXS24LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rated Capacity</th>
<th>24 kBtu/h Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front Panel Color</td>
<td>White</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Airflow Rates</th>
<th>H (cfm)</th>
<th>M (cfm)</th>
<th>L (cfm)</th>
<th>SL (cfm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling</td>
<td>643 (18.2)</td>
<td>572 (16.2)</td>
<td>445 (12.6)</td>
<td>399 (11.3)</td>
</tr>
<tr>
<td>Heating</td>
<td>699 (19.6)</td>
<td>572 (16.2)</td>
<td>445 (12.6)</td>
<td>399 (11.3)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Air Filter</th>
<th>Removable, Washable, Mildew Proof</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Current (Rated)</td>
<td>0.32 - 0.30</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
</tr>
<tr>
<td>Dimensions</td>
<td>in. (mm)</td>
</tr>
<tr>
<td>Weight</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid</td>
</tr>
<tr>
<td>Gas</td>
<td>φ 12.7</td>
</tr>
<tr>
<td>Drain</td>
<td>φ 16</td>
</tr>
<tr>
<td>Sound Power Level</td>
<td>dB</td>
</tr>
</tbody>
</table>

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3

Notes:

1. SL: The quiet fan level of the airflow rate setting.
Specifications

Model FDXS09LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1φ</td>
<td>1φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

Model FDXS12LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1φ</td>
<td>1φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

Rated Capacity

- 9 kBtu/h Class
- 12 kBtu/h Class

External Static Pressure

- inH₂O (Pa): 0.12 (30)

Airflow Rates

<table>
<thead>
<tr>
<th>Model</th>
<th>H (cfm) (m³/min)</th>
<th>M (cfm) (m³/min)</th>
<th>L (cfm) (m³/min)</th>
<th>SL (cfm) (m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDXS09LVJU</td>
<td>305 (8.6)</td>
<td>260 (7.9)</td>
<td>253 (6.7)</td>
<td>235 (6.7)</td>
</tr>
<tr>
<td>FDXS12LVJU</td>
<td>305 (8.6)</td>
<td>260 (7.9)</td>
<td>260 (7.4)</td>
<td>235 (6.7)</td>
</tr>
</tbody>
</table>

Fan Type

- Sirocco Fan

Motor Output

- W: 62

Speed Steps

- 5 Steps, Quiet, Auto

Air Filter

- Removable, Washable, Mildew Proof

Running Current (Rated)

- A: 0.58 - 0.52

Power Consumption (Rated)

- W: 72 - 72

Power Factor (Rated)

- %: 59.7 - 60.2

Temperature Control

- Microcomputer Control

Dimensions (H × W × D)

- in. (mm): 7-7/8 × 27-9/16 × 24-7/16 (200 × 700 × 620)

Weight (Mass)

- lbs (kg): 47 (21)

Sound Pressure Level

- H: 35 / 33 / 31
- M: 33 / 31 / 31
- L: 297 (8.4)
- SL: 297 (8.4)

Heat Insulation

- Both Liquid and Gas Pipes

Piping Connection

- Liquid (in. (mm)): 1/4 (φ 6.4)
- Gas (in. (mm)): 1/2 (φ 12.7)
- Drain (in. (mm)): 25/32 (φ 20)

Drawing No.

- 3D075493

Notes

1. SL: The quiet fan level of the airflow rate setting.

Model CDXS15LVJU

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase</td>
<td>1φ</td>
<td>1φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
</tbody>
</table>

Rated Capacity

- 15 kBtu/h Class
- 18 kBtu/h Class

External Static Pressure

- inH₂O (Pa): 0.16 (40)

Airflow Rates

<table>
<thead>
<tr>
<th>Model</th>
<th>H (cfm) (m³/min)</th>
<th>M (cfm) (m³/min)</th>
<th>L (cfm) (m³/min)</th>
<th>SL (cfm) (m³/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDXS15LVJU</td>
<td>424 (12.0)</td>
<td>388 (11.0)</td>
<td>353 (10.0)</td>
<td>297 (8.4)</td>
</tr>
<tr>
<td>CDXS18LVJU</td>
<td>424 (12.0)</td>
<td>388 (11.0)</td>
<td>353 (10.0)</td>
<td>297 (8.4)</td>
</tr>
</tbody>
</table>

Fan Type

- Sirocco Fan

Motor Output

- W: 130

Speed Steps

- 5 Steps, Quiet, Auto

Air Filter

- Removable, Washable, Mildew Proof

Running Current (Rated)

- A: 0.79

Power Consumption (Rated)

- W: 172

Power Factor (Rated)

- %: 94.4

Temperature Control

- Microcomputer Control

Dimensions (H × W × D)

- in. (mm): 7-7/8 × 35-7/16 × 24-7/16 (200 × 900 × 620)

Weight (Mass)

- lbs (kg): 60 (27)

Sound Pressure Level

- H: 37 / 35 / 33 / 31
- M: 33 / 31 / 31
- L: 297 (8.4)
- SL: 297 (8.4)

Heat Insulation

- Both Liquid and Gas Pipes

Piping Connection

- Liquid (in. (mm)): 1/4 (φ 6.4)
- Gas (in. (mm)): 1/2 (φ 12.7)
- Drain (in. (mm)): VP20 (OD φ 1-1/32, ID φ 25/32)

Drawing No.

- C: 3D075721

Notes

1. SL: The quiet fan level of the airflow rate setting.

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
CDXS24LVJU Specifications

<table>
<thead>
<tr>
<th>Power Supply</th>
<th>Phase</th>
<th>1 φ</th>
<th>Hz, V</th>
<th>60 Hz, 208 - 230 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated Capacity</td>
<td>24 kBtu/h Class</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Static Pressure</td>
<td>inH₂O (Pa)</td>
<td>0.16 (40)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Airflow Rates</td>
<td>cfm (m³/min)</td>
<td>H 565 (16.0), M 523 (14.8), L 477 (13.5), SL 395 (11.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fan</td>
<td>Type</td>
<td>Sirocco Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air Filter</td>
<td>Removable, Washable, Mildew Proof</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
<td>160</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
<td>90.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>7-7/8 × 43-5/16 × 24-7/16 (200 × 1,100 × 620)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaged Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>10-1/2 × 52-1/16 × 30-1/4 (266 × 1,323 × 768)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>66 (30)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
<td>84 (38)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>H / M / L / SL</td>
<td>38 / 36 / 34 / 32</td>
<td></td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>23-5/8 × 27-9/16 × 8-1/4 (600 × 700 × 210)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaged Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>27-3/8 × 30-15/16 × 11 (696 × 786 × 280)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>31 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
<td>40 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>H / M / L / SL</td>
<td>38 / 32 / 26 / 23</td>
<td></td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>23-5/8 × 27-9/16 × 8-1/4 (600 × 700 × 210)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Packaged Dimensions (H × W × D)</td>
<td>in. (mm)</td>
<td>27-3/8 × 30-15/16 × 11 (696 × 786 × 280)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>31 (14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
<td>40 (18)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>H / M / L / SL</td>
<td>39 / 33 / 27 / 24</td>
<td></td>
</tr>
</tbody>
</table>

Notes

1. SL: The quiet fan level of the airflow rate setting.
2. The operating sound is based on the rear side suction inlet and the external static pressure 0.16 inH₂O (40 Pa). Operating sound for bottom suction inlet: [operating sound for rear side suction inlet] +5 dB. However, when installation resulting in lower external static pressure becomes low is carried out, the operation sound may rise by more than 5 dB.

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
<table>
<thead>
<tr>
<th>Model</th>
<th>FVXS15NVJU</th>
<th>FVXS18NVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td></td>
<td>15 kBtu/h Class</td>
<td>18 kBtu/h Class</td>
</tr>
<tr>
<td>Airflow Rates</td>
<td>378 (10.7) 417 (11.8)</td>
<td>378 (10.7) 417 (11.8)</td>
</tr>
<tr>
<td></td>
<td>275 (7.8) 300 (8.5)</td>
<td>275 (7.8) 300 (8.5)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Turbo Fan</td>
<td>Turbo Fan</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W 23.3</td>
<td>W 23.3</td>
</tr>
<tr>
<td>Speed</td>
<td>5 Steps</td>
<td>5 Steps</td>
</tr>
<tr>
<td></td>
<td>Quiet, Auto</td>
<td>Quiet, Auto</td>
</tr>
<tr>
<td></td>
<td>Right, Left, Horizontal, Downward</td>
<td>Right, Left, Horizontal, Downward</td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>0.19 - 0.17</td>
<td>0.21 - 0.19</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>27 - 27</td>
<td>34 - 34</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>69.3 - 69.1</td>
<td>77.8 - 77.8</td>
</tr>
<tr>
<td>Temperature Control</td>
<td>Microcomputer Control</td>
<td>Microcomputer Control</td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg) 31 (14)</td>
<td>Lbs (kg) 31 (14)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>40 (16)</td>
<td>40 (16)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>H / M / L / SL dB(A) 44 / 40 / 36 / 32</td>
<td>44 / 40 / 36 / 32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid φ 1/4 (6.4)</td>
<td>Gas φ 1/2 (12.7)</td>
</tr>
<tr>
<td></td>
<td>φ 1/16 (6.4)</td>
<td>φ 1/2 (12.7)</td>
</tr>
<tr>
<td></td>
<td>φ 13/16 (20)</td>
<td>φ 13/16 (20)</td>
</tr>
<tr>
<td>Drawing No.</td>
<td>3D101718</td>
<td>3D094866</td>
</tr>
<tr>
<td>Notes</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
<td>1. SL: The quiet fan level of the airflow rate setting.</td>
</tr>
</tbody>
</table>

Conversion Formulae:

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
1.2 SA Indoor Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>FDMQ09RVJU</th>
<th>FDMQ12RVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td>9 kBtu/h Class</td>
<td></td>
</tr>
<tr>
<td>Casing Color</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>9-5/8 × 27-9/16 × 31-1/2 (245 × 700 × 800)</td>
<td>9-5/8 × 27-9/16 × 31-1/2 (245 × 700 × 800)</td>
</tr>
<tr>
<td>Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Cross Fin Coil</td>
<td>Cross Fin Coil</td>
</tr>
<tr>
<td>Rows × Stages × Fin per Inch</td>
<td>3 × 26 × 18</td>
<td>3 × 26 × 18</td>
</tr>
<tr>
<td>Face Area</td>
<td>R² (m²)</td>
<td>1-15/16 (0.178)</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Sirocco Fan</td>
<td>Sirocco Fan</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>130</td>
</tr>
<tr>
<td>Airflow Rate</td>
<td>cfm (m³/min)</td>
<td>343 / 290 / 240 (9.7 / 8.2 / 6.8)</td>
</tr>
<tr>
<td>External Static</td>
<td>inH₂O</td>
<td>0.20 (0.60 - 0.12)</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa</td>
<td>50 (150 - 30)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>32</td>
</tr>
<tr>
<td>Sound Power Level</td>
<td>dB(A)</td>
<td>46</td>
</tr>
<tr>
<td>Air Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>64 (29)</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid</td>
<td>3/4 (φ 12.7) (Flare)</td>
</tr>
<tr>
<td>Gas</td>
<td>in. (mm)</td>
<td>3/4 (φ 12.7) (Flare)</td>
</tr>
<tr>
<td>Remote Controller (Option)</td>
<td>Wired</td>
<td>BRC1E73</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
<td>BRC082A43</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. External static pressure is changeable in 11 stages by remote controller.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its dust collection efficiency (gravity method) 50% or more.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Part 2 Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>FDMQ15RVJU</th>
<th>FDMQ18RVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>1 φ</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td>15 kBtu/h Class</td>
<td>18 kBtu/h Class</td>
</tr>
<tr>
<td>Casing Color</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>9-5/8 × 39-3/8 × 31-1/2 (245 × 1,000 × 800)</td>
<td>9-5/8 × 39-3/8 × 31-1/2 (245 × 1,000 × 800)</td>
</tr>
<tr>
<td>Coil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Cross Fin Coil</td>
<td>Cross Fin Coil</td>
</tr>
<tr>
<td>Rows × Stages × Fin per Inch</td>
<td>2 × 26 × 18</td>
<td>3 × 26 × 18</td>
</tr>
<tr>
<td>Face Area</td>
<td>R² (m²)</td>
<td>3-1/8 (0.288)</td>
</tr>
<tr>
<td>Fan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Sirocco Fan</td>
<td>Sirocco Fan</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>230</td>
</tr>
<tr>
<td>Airflow Rate</td>
<td>cfm (m³/min)</td>
<td>516 / 438 / 360 (16.4 / 12.4 / 10.2)</td>
</tr>
<tr>
<td>External Static</td>
<td>inH₂O</td>
<td>0.20 (0.60 - 0.20)</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pa</td>
<td>50 (150 - 50)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>34</td>
</tr>
<tr>
<td>Sound Power Level</td>
<td>dB(A)</td>
<td>48</td>
</tr>
<tr>
<td>Air Filter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>77 (35)</td>
</tr>
<tr>
<td>Piping Connection</td>
<td>Liquid</td>
<td>2-1/2 (φ 12.7) (Flare)</td>
</tr>
<tr>
<td>Gas</td>
<td>in. (mm)</td>
<td>2-1/2 (φ 12.7) (Flare)</td>
</tr>
<tr>
<td>Remote Controller (Option)</td>
<td>Wired</td>
<td>BRC1E73</td>
</tr>
<tr>
<td></td>
<td>Wireless</td>
<td>BRC082A43</td>
</tr>
<tr>
<td>Notes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. External static pressure is changeable in 11 stages by remote controller.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its dust collection efficiency (gravity method) 50% or more.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conversion Formulae

<table>
<thead>
<tr>
<th>kcal/h = kW × 860</th>
</tr>
</thead>
<tbody>
<tr>
<td>Btu/h = kW × 3412</td>
</tr>
<tr>
<td>cfm = m³/min × 35.3</td>
</tr>
</tbody>
</table>
Model Specifications

Power Supply
- **Phase**: 1 φ
- **Hz, V**: 60 Hz, 208 - 230 V

Rated Capacity
- **Cooling**: 24 kBtu/h Class
- **Heating**: —

Casing Color
- —

Dimensions (H × W × D)
- **Cooling**: 9-5/8 × 39-3/8 × 31-1/2 (245 × 1,000 × 800)
- **Heating**: —

Coil
- **Type**: Cross Fin Coil
- **Rows × Stages × Fin per Inch**: 3 × 26 × 18
- **Face Area**: 3-1/8 (0.288)

Fan
- **Type**: Sirocco Fan
- **Motor Output**: W 230
- **Airflow Rate H / M / L**: 798 / 678 / 558 (22.6 / 19.2 / 15.8)
- **External Static Pressure**: 0.20 (0.60 - 0.20)
- **Sound Pressure Level**: dB(A) 40
- **Sound Power Level**: dB(A) 54
- **Air Filter**: —

Weight (Mass)
- **Liquid**: Lbs (kg) 82 (37)
- **Gas**: Lbs (kg) 6 (2.7)
- **Drain**: Lbs (kg) 6 (2.8)

Remote Controller
- **Wired**: BRC1E73
- **Wireless**: BRC082A43

Notes
- **1**: External static pressure is changeable in 11 stages by remote controller.
- **2**: Air filter is not standard accessory, but please mount it in the duct system of the suction side. Select its dust collection efficiency (gravity method) 50% or more.

Model FFQ09Q2VJU FFQ12Q2VJU

Power Supply
- **Phase**: 1 φ
- **Hz, V**: 60 Hz, 208 - 230 V

Rated Capacity
- **Cooling**: 9 kBtu/h Class
- **Heating**: 12 kBtu/h Class

Decoration Panel (1)
- **Model**: BYFQ60B3W1
- **Color**: White
- **Dimensions (H × W × D) in. (mm)**: 2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)
- **Weight (Mass) Lbs (kg)**: 6 (2.7)

Decoration Panel (2)
- **Model**: BYFQ60C2W1W / BYFQ60C2W1S
- **Color**: White / Silver
- **Dimensions (H × W × D) in. (mm)**: 1-13/16 × 24-7/16 × 24-7/16 (46 × 620 × 620)
- **Weight (Mass) Lbs (kg)**: 6.2 (2.8)

Airflow Rates
- **H** (cfm): 378 (10.7)
- **M** (cfm): 339 (9.6)
- **L** (cfm): 268 (7.6)

Fan
- **Type**: Turbo Fan
- **Motor Output**: W —
- **Speed Steps**: 3 Steps

Air Direction Control
- —

Running Current (Rated)
- **A**: 0.23 - 0.21

Power Consumption (Rated)
- **W**: 23

Power Factor (Rated)
- **%**: 48.1 - 47.6

Temperature Control
- **Microcomputer Control**

Dimensions (H × W × D)
- **Liquid**: 10-1/4 × 22-5/8 × 22-5/8 (260 × 575 × 575)
- **Gas**: 11 × 27 × 23-1/2 (280 × 686 × 597)

Weight (Mass)
- **Lbs (kg)**: 36 (16)

Gross Weight (Gross Mass)
- **Lbs (kg)**: 40 (18)

Sound Pressure Level
- **H / M / L dB(A)**: 38 / 35 / 29

Heat Insulation
- **Both Liquid and Gas Pipes**

Piping Connection
- **Liquid in. (mm)**: 1/4 (6.4)
- **Gas in. (mm)**: 5/8 (15.9)
- **Drain in. (mm)**: I.D. 1 (25) / O.D. 1-1/4 (32) (Flare)

Notes
- 1. SL: The quiet fan level of the airflow rate setting.

Conversion Formulæ
- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>FFQ15Q2VJU</th>
<th>FFQ18Q2VJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td>Cooling</td>
<td>Heating</td>
</tr>
<tr>
<td>Phase</td>
<td>1φ</td>
<td>1φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>Rated Capacity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model</td>
<td>BYFQ60B3W1</td>
<td>BYFQ60B3W1</td>
</tr>
<tr>
<td>Color</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Dimensions (H × W × D) in. (mm)</td>
<td>2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)</td>
<td>2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)</td>
</tr>
<tr>
<td>Weight (Mass) Lbs (kg)</td>
<td>6 (2.7)</td>
<td>6 (2.7)</td>
</tr>
</tbody>
</table>

Decoration Panel (1)				
Cooling				
Heating				
Power Supply Phase	1φ	1φ	1φ	1φ
Rated Capacity				
Model	BYFQ60B3W1	BYFQ60B3W1	BYFQ60C2W1S	BYFQ60C2W1S
Color	White	White	White / Silver	White / Silver
Dimensions (H × W × D) in. (mm)	2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)	2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)	1-13/16 × 24-7/16 × 24-7/16 (46 × 620 × 620)	1-13/16 × 24-7/16 × 24-7/16 (46 × 620 × 620)
Weight (Mass) Lbs (kg)	6 (2.7)	6 (2.7)	6.2 (2.8)	6.2 (2.8)

Airflow Rates				
H cfm (m³/min)	420 (11.9)	441 (12.5)	448 (12.7)	498 (14.1)
M	367 (10.4)	385 (10.9)	378 (10.7)	420 (11.9)
L	293 (8.3)	307 (8.7)	307 (8.7)	307 (8.7)

Fan				
Type	Turbo Fan	Turbo Fan		
Motor Output W				
Speed Steps	3 Steps	3 Steps		
Air Direction Control				
Running Current (Rated) A	0.29 - 0.26	0.29 - 0.26	0.52 - 0.47	0.52 - 0.47
Power Consumption (Rated) W	28	28	51 - 51	51 - 51
Power Factor (Rated) %	46.4 - 46.8	46.4 - 46.8	47.2 - 47.2	47.2 - 47.2
Temperature Control	Microcomputer Control	Microcomputer Control		
Weight (Mass) Lbs (kg)	36 (16)	36 (16)	39.0 (17.5)	39.0 (17.5)
Gross Weight (Gross Mass) Lbs (kg)	40 (18)	40 (18)	42.0 (19.0)	42.0 (19.0)
Sound Pressure Level H / M / L dB(A)	40 / 37 / 31	40 / 37 / 31	44 / 40 / 32	44 / 40 / 32
Heat Insulation	Both Liquid and Gas Pipes	Both Liquid and Gas Pipes		
Piping Connection				
Liquid in. (mm)	φ 1/4 (6.4)	φ 1/4 (6.4)	φ 1/2 (12.7)	φ 1/2 (12.7)
Gas in. (mm)	φ 1/2 (12.7)	φ 1/2 (12.7)	φ 1/2 (12.7)	φ 1/2 (12.7)
Drain in. (mm)	VP20 (O.D. φ1-1/32 (6.3))			
Drawing No.	JD106066A	JD106066A	JD106066A	JD106066A
Notes	1. SL: The quiet fan level of the airflow rate setting.	1. SL: The quiet fan level of the airflow rate setting.		

Conversion Formulae

- \(\text{kcal/h} = \text{kW} \times 860 \)
- \(\text{Btu/h} = \text{kW} \times 3412 \)
- \(\text{cfm} = \text{m}^3/\text{min} \times 35.3 \)
1.3 Outdoor Unit

<table>
<thead>
<tr>
<th>Specification</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5MXS48TVJU</td>
<td></td>
</tr>
<tr>
<td>Power Supply</td>
<td>Phase</td>
<td>1φ</td>
</tr>
<tr>
<td></td>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>COP</td>
<td>W/W</td>
<td>3.9 (Non-Ducted type connected)</td>
</tr>
<tr>
<td>EER</td>
<td>Blu/W h</td>
<td>10.5 (Non-Ducted type connected)</td>
</tr>
<tr>
<td>SEER / HSPF</td>
<td></td>
<td>20.2 (Non-Ducted type connected)</td>
</tr>
<tr>
<td>Casing Color</td>
<td></td>
<td>8.6 (Ducted type connected)</td>
</tr>
<tr>
<td>Compressor</td>
<td>Type</td>
<td>Hermetically Sealed Swing Type</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>3,000</td>
</tr>
<tr>
<td>Refrigerant Oil</td>
<td>Model</td>
<td>FVC50K</td>
</tr>
<tr>
<td>Refrigerant</td>
<td>Type</td>
<td>R-410A</td>
</tr>
<tr>
<td>Airflow Rates</td>
<td>H [cfm]</td>
<td>3,684</td>
</tr>
<tr>
<td></td>
<td>M [cfm]</td>
<td>3,029</td>
</tr>
<tr>
<td></td>
<td>L [cfm]</td>
<td>2,576</td>
</tr>
<tr>
<td></td>
<td>H [m³/min]</td>
<td>104.3</td>
</tr>
<tr>
<td></td>
<td>M [m³/min]</td>
<td>85.8</td>
</tr>
<tr>
<td></td>
<td>L [m³/min]</td>
<td>78.0</td>
</tr>
<tr>
<td>Fan</td>
<td>Type</td>
<td>Propeller</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>64</td>
</tr>
<tr>
<td>Running Current</td>
<td>A</td>
<td>H: 1.49 / M: 1.09 / L: 0.94</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>W</td>
<td>H: 158.5 / M: 93.3 / L: 73.2</td>
</tr>
<tr>
<td>Starting Current</td>
<td>A</td>
<td>H: 27.0</td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>In. (mm)</td>
<td>34-1/4 × 43-5/16 × 18-1/8 (870 × 1,100 × 460)</td>
</tr>
<tr>
<td>Packaged Dimensions (H × W × D)</td>
<td>In. (mm)</td>
<td>39-15/16 × 46-7/8 × 22 (1,014 × 1,190 × 558)</td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>216 (98)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass)</td>
<td>Lbs (kg)</td>
<td>236 (107)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>dB(A)</td>
<td>53</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
<td></td>
</tr>
<tr>
<td>No. of Wiring Connections</td>
<td>3 for Power Supply, 4 for Interunit Wiring</td>
<td></td>
</tr>
<tr>
<td>Max. Interunit Piping Length</td>
<td>ft (m)</td>
<td>262 (80) (for Total of Each Room)</td>
</tr>
<tr>
<td>Amount of Additional Charge</td>
<td>oz/ft (g/m)</td>
<td>0.21 (20) (131-5/8 ft (40m) or more)</td>
</tr>
<tr>
<td>Max. Installation Height Difference</td>
<td>ft (m)</td>
<td>49-1/4 (15) (Between Indoor Unit and Outdoor Unit)</td>
</tr>
<tr>
<td></td>
<td>ft (m)</td>
<td>24-5/8 (7.5) (Between Indoor Units)</td>
</tr>
<tr>
<td>Conditions based on</td>
<td>Indoor; 80°FDB (26.7°CDB) / 67°FWB (19.4°CWB)</td>
<td>Indoor; 70°FDB (21°CDB) / 60°FWB (15.6°CWB)</td>
</tr>
<tr>
<td></td>
<td>Outdoor; 95°FDB (35°CDB) / 75°FWB (24°CWB)</td>
<td>Outdoor; 47°FDB (8.3°CDB) / 43°FWB (6°CWB)</td>
</tr>
<tr>
<td></td>
<td>Piping length: 25 ft (7.5 m)</td>
<td></td>
</tr>
</tbody>
</table>

Conversion Formulae
- \(kwh = kW \times 860 \)
- \(Btuh = kW \times 3412 \)
- \(cfm = m³/min \times 35.3 \)
Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>4MXL36TVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
</tr>
<tr>
<td>Phase</td>
<td>1 φ</td>
</tr>
<tr>
<td>Hz, V</td>
<td>60 Hz, 208 - 230 V</td>
</tr>
<tr>
<td>COP</td>
<td></td>
</tr>
<tr>
<td>W/W</td>
<td>4.26 (Non-Ducted type connected)</td>
</tr>
<tr>
<td></td>
<td>3.5 (Ducted type connected)</td>
</tr>
<tr>
<td>EER</td>
<td></td>
</tr>
<tr>
<td>Btu/W·h</td>
<td>12.5 (Non-Ducted type connected)</td>
</tr>
<tr>
<td></td>
<td>11.0 (Ducted type connected)</td>
</tr>
<tr>
<td>SEER / HSPF</td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.7 (Non-Ducted type connected)</td>
</tr>
<tr>
<td></td>
<td>16.9 (Ducted type connected)</td>
</tr>
<tr>
<td></td>
<td>11.2 (Non-Ducted type connected)</td>
</tr>
<tr>
<td></td>
<td>9.1 (Ducted type connected)</td>
</tr>
<tr>
<td>Casing Color</td>
<td>Ivory White</td>
</tr>
<tr>
<td>Compressor Type</td>
<td>Hermetically Sealed Swing Type</td>
</tr>
<tr>
<td>Model</td>
<td>2YC90KXD</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W 3,000</td>
</tr>
<tr>
<td>Refrigerant Oil Model</td>
<td>PVC50K</td>
</tr>
<tr>
<td>Charge oz (L)</td>
<td>50.2 (1.52)</td>
</tr>
<tr>
<td>Refrigerant Type</td>
<td>R410A</td>
</tr>
<tr>
<td>Airflow Rates</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>3.684 cfm</td>
</tr>
<tr>
<td>M</td>
<td>3.029</td>
</tr>
<tr>
<td>L</td>
<td>2.756</td>
</tr>
<tr>
<td>H</td>
<td>104.3</td>
</tr>
<tr>
<td>M</td>
<td>85.8</td>
</tr>
<tr>
<td>L</td>
<td>78.0</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Propeller</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W 84</td>
</tr>
<tr>
<td>Running Current A</td>
<td>H: 1.49 / M: 1.09 / L: 0.94</td>
</tr>
<tr>
<td></td>
<td>H: 1.28 / M: 1.15 / L: 0.38</td>
</tr>
<tr>
<td>Power Consumption W</td>
<td>H: 158.5 / M: 93.3 / L: 73.2</td>
</tr>
<tr>
<td></td>
<td>H: 122.9 / M: 102.5 / L: 34.9</td>
</tr>
<tr>
<td>Starting Current A</td>
<td>27.0</td>
</tr>
<tr>
<td>Dimensions (H × W × D) In. (mm)</td>
<td>34-1/4 × 43-5/16 × 18-1/8 (870 × 1,100 × 460)</td>
</tr>
<tr>
<td>Packaged Dimensions (H × W × D) In. (mm)</td>
<td>39-15/16 × 46-7/8 × 22 (1,014 × 1,190 × 558)</td>
</tr>
<tr>
<td>Weight (Mass) Lbs (kg)</td>
<td>214 (97)</td>
</tr>
<tr>
<td>Gross Weight (Gross Mass) Lbs (kg)</td>
<td>234 (106)</td>
</tr>
<tr>
<td>Sound Pressure Level dB(A)</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>55</td>
</tr>
<tr>
<td>Piping Connection</td>
<td></td>
</tr>
<tr>
<td>Liquid in. (mm)</td>
<td>φ 1/4 × 4 (φ 6.4 × 4)</td>
</tr>
<tr>
<td>Gas in. (mm)</td>
<td>φ 3/8 × 1, φ 1/2 × 2, φ 5/8 × 1 (φ 9.5 × 1, φ 12.7 × 2, φ 15.9 × 1)</td>
</tr>
<tr>
<td>Drain in. (mm)</td>
<td>I.D. φ 1 (φ 25)</td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both Liquid and Gas Pipes</td>
</tr>
<tr>
<td>No. of Wiring Connections</td>
<td>3 for Power Supply, 4 for Interunit Wiring</td>
</tr>
<tr>
<td>Max. Interunit Piping Length ft (m)</td>
<td>230 (70) (for Total of Each Room)</td>
</tr>
<tr>
<td></td>
<td>98 (30) (for One Room)</td>
</tr>
<tr>
<td>Amount of Additional Charge oz/ft (g/m)</td>
<td>0.21 (20) (131-5/8 ft (40m) or more)</td>
</tr>
<tr>
<td>Max. Installation Height Difference ft (m)</td>
<td>49-1/4 (15) (Between Indoor Unit and Outdoor Unit)</td>
</tr>
<tr>
<td></td>
<td>24-5/8 (7.5) (Between Indoor Units)</td>
</tr>
<tr>
<td>Conditions based on</td>
<td></td>
</tr>
<tr>
<td>Indoor ; 80°FDB (26.7°CDB) / 67°FWB (19.4°CWB)</td>
<td>Outdoor ; 95°FDB (35°CDB) / 75°FWB (24°CWB)</td>
</tr>
<tr>
<td>Outdoor ; 70°FDB (21°CDB) / 60°FWB (15.6°CWB)</td>
<td>Outdoor ; 47°FDB (8.3°CDB) / 43°FWB (5°CWB)</td>
</tr>
<tr>
<td>Piping length : 25 ft (7.5 m)</td>
<td></td>
</tr>
<tr>
<td>Drawing No.</td>
<td>C: 3D118282</td>
</tr>
</tbody>
</table>

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3
Part 3
Printed Circuit Board Connector Wiring Diagram

1. Indoor Unit...37
 1.1 FTXR09/12/18TVJUW(S), CTXG09/12/18QVJUW(S)37
 1.2 CTXS07LVJU, FTXS09/12LVJU ..39
 1.3 FTXS15/18/24LVJU ...41
 1.4 FDXS09/12LVJU, CDXS15/18/24LVJU43
 1.5 FVXS09/12/15/18NVJU ..45
 1.6 FDMQ09/12/15/18/24RVJU ..47
 1.7 FFQ09/12/15/18Q2VJU ..49
2. Sensor Kit for FFQ Series...50
 2.1 BRYQ60A2W(S) ...50
3. Wired Remote Controller...51
 3.1 BRC1E73 ...51
4. Wireless Remote Controller Receiver for FDMQ series52
 4.1 BRC082A43 ..52
5. Wireless Remote Controller Kit for FFQ Series53
 5.1 BRC082A41W, BRC082A42W(S) ..53
6. Outdoor Unit..54
1. Indoor Unit

1.1 FTXR09/12/18TVJUW(S), CTXG09/12/18QVJUW(S)

Control PCB
(A1P)

1) S21 Connector for centralized control (HA)
2) S25 Connector for INTELLIGENT EYE sensor PCB (A3P)
3) S32 Indoor heat exchanger thermistor
4) S41 Connector for swing motors
5) S42 Connector for reduction motor (front panel mechanism) and limit switch
6) S46 Connector for display/signal receiver PCB (A2P)
7) S200 Connector for DC fan motor
8) H1, H2, H3 Connector for terminal strip (indoor - outdoor transmission)
9) FG Connector for terminal strip (frame ground)
10) JB Fan speed setting when compressor stops for thermostat OFF
 * Refer to page 261 for details.
11) JC Power failure recovery function (auto-restart)
 * Refer to page 261 for details.
12) LED A LED for service monitor (green)
13) F1U, F2U Fuse (3.15 A, 250 V)
14) V1 Varistor

Caution

Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
Display/Signal Receiver PCB (A2P)

1) S51 Connector for control PCB (A1P)
2) S52 Connector for room temperature thermistor
3) S1W Indoor unit ON/OFF switch
4) H1P LED for operation (multi-color)
5) H2P LED for INTELLIGENT EYE (green)
6) JA Address setting jumper
 * Refer to page 258 for details.

INTELLIGENT EYE Sensor PCB (A3P)

1) S36 Connector for control PCB (A1P)

Caution

Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
1.2 CTXS07LVJU, FTXS09/12LVJU

Control PCB (PCB1)

<table>
<thead>
<tr>
<th>Number</th>
<th>Connector Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>S1 Connector for DC fan motor</td>
</tr>
<tr>
<td>2)</td>
<td>S21 Connector for centralized control (HA)</td>
</tr>
<tr>
<td>3)</td>
<td>S25 Connector for INTELLIGENT EYE sensor PCB (PCB4)</td>
</tr>
<tr>
<td>4)</td>
<td>S32 Indoor heat exchanger thermistor</td>
</tr>
<tr>
<td>5)</td>
<td>S41 Connector for swing motors</td>
</tr>
<tr>
<td>6)</td>
<td>S46 Connector for display PCB (PCB3)</td>
</tr>
<tr>
<td>7)</td>
<td>S47 Connector for signal receiver PCB (PCB2)</td>
</tr>
<tr>
<td>8)</td>
<td>H1, H2, H3, FG Connector for terminal strip</td>
</tr>
<tr>
<td>9)</td>
<td>JA Address setting jumper</td>
</tr>
<tr>
<td>10)</td>
<td>JB Fan speed setting when compressor stops for thermostat OFF</td>
</tr>
<tr>
<td>11)</td>
<td>JC Power failure recovery function (auto-restart)</td>
</tr>
<tr>
<td>12)</td>
<td>LED A LED for service monitor (green)</td>
</tr>
<tr>
<td>13)</td>
<td>FU1 (F1U), FU2 Fuse (3.15 A, 250 V)</td>
</tr>
<tr>
<td>14)</td>
<td>V1 Varistor</td>
</tr>
</tbody>
</table>

Caution

Replace the PCB if you cut a jumper unintentionally.

Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

Note

The symbols in the parenthesis are the names on the appropriate wiring diagram.
Signal Receiver PCB (PCB2)
1) S48 Connector for control PCB (PCB1)

Display PCB (PCB3)
1) S49 Connector for control PCB (PCB1)
2) SW1 Indoor unit ON/OFF switch
3) LED1 (H1P) LED for operation (green)
4) LED2 (H2P) LED for timer (yellow)
5) LED3 (H3P) LED for INTELLIGENT EYE (green)
6) RTH1 (R1T) Room temperature thermistor

INTELLIGENT EYE Sensor PCB (PCB4)
1) S26 Connector for control PCB (PCB1)

Note The symbols in the parenthesis are the names on the appropriate wiring diagram.
1.3 FTXS15/18/24LVJU

Control PCB (PCB1)

<table>
<thead>
<tr>
<th>Number</th>
<th>Connector/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>S1 Connector for DC fan motor</td>
</tr>
<tr>
<td>2)</td>
<td>S21 Connector for centralized control (HA)</td>
</tr>
<tr>
<td>3)</td>
<td>S25 Connector for INTELLIGENT EYE sensor PCB (PCB4)</td>
</tr>
<tr>
<td>4)</td>
<td>S32 Indoor heat exchanger thermistor</td>
</tr>
<tr>
<td>5)</td>
<td>S41 Connector for swing motors</td>
</tr>
<tr>
<td>6)</td>
<td>S46 Connector for display PCB (PCB3)</td>
</tr>
<tr>
<td>7)</td>
<td>S47 Connector for signal receiver PCB (PCB2)</td>
</tr>
<tr>
<td>8)</td>
<td>H1, H2, H3, FG Connector for terminal strip</td>
</tr>
</tbody>
</table>
| 9) | JA Address setting jumper

 * Refer to page 258 for details. |
| 10) | JB Fan speed setting when compressor stops for thermostat OFF

 * Refer to page 261 for details. |
| 11) | JC Power failure recovery function (auto-restart)

 * Refer to page 261 for details. |
| 12) | LED A LED for service monitor (green) |
| 13) | FU1 (F1U), FU2 (F2U) Fuse (3.15 A, 250 V) |
| 14) | V1 Varistor |

Note

The symbols in the parenthesis are the names on the appropriate wiring diagram.

Caution

Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
Indoor Unit

Signal Receiver PCB (PCB2)

1) S48 Connector for control PCB (PCB1)

![Diagram](image1)

Display PCB (PCB3)

1) S49 Connector for control PCB (PCB1)
2) SW1 Indoor unit ON/OFF switch
3) LED1 (H1P) LED for operation (green)
4) LED2 (H2P) LED for timer (yellow)
5) LED3 (H3P) LED for INTELLIGENT EYE (green)
6) RTH1 (R1T) Room temperature thermistor

![Diagram](image2)

INTELLIGENT EYE Sensor PCB (PCB4)

1) S36 Connector for control PCB (PCB1)

![Diagram](image3)

Note

The symbols in the parenthesis are the names on the appropriate wiring diagram.
1.4 FDXS09/12LVJU, CDXS15/18/24LVJU

Control PCB (A1P)

1) S1 Connector for AC fan motor
2) S7 Connector for AC fan motor (Hall IC)
3) S21 Connector for centralized control (HA)
4) S26 Connector for display/signal receiver PCB (A2P)
5) S32 Connector for indoor heat exchanger thermistor
6) H1, H2, H3 Connector for terminal block
7) FG (GND) Connector for terminal block (ground)
8) JA Address setting jumper
 * Refer to page 258 for details.
9) JB Fan speed setting when compressor stops for thermostat OFF
 * Refer to page 261 for details.
10) JC Power failure recovery function (auto-restart)
 * Refer to page 261 for details.
11) LED A LED for service monitor (green)
12) FU1 (F1U) Fuse (3.15 A, 250 V)
13) V1 Varistor

Caution

Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

Note

The symbols in the parenthesis are the names on the appropriate wiring diagram.
Display/Signal Receiver PCB (A2P)

1) S1 Connector for control PCB (A1P)
2) SW1 (S1W) Indoor unit ON/OFF switch
3) LED2 (H2P) LED for timer (yellow)
4) LED3 (H3P) LED for operation (green)
5) RTH1 (R1T) Room temperature thermistor

Note: The symbols in the parenthesis are the names on the appropriate wiring diagram.

★LED 1 does not function.
1.5 FVXS09/12/15/18NVJU

Control PCB (PCB2)

1) S1 Connector for DC fan motor
2) S21 Connector for centralized control (HA)
3) S26 Connector for service PCB (PCB3)
4) S32 Indoor heat exchanger thermistor
5) S41 Connector for lower air outlet motor
6) S42 Connector for swing motor
7) S46 Connector for display/signal receiver PCB (PCB4)
8) S48 Connector for sensor PCB (PCB1)
9) H1, H2, H3 Connector for terminal strip
10) E1 Terminal for ground wire
11) JA Address setting jumper
 ∗ Refer to page 258 for details.
12) JB Fan speed setting when compressor stops for thermostat OFF
 ∗ Refer to page 261 for details.
13) JC Power failure recovery function
 ∗ Refer to page 261 for details.
14) FU1 (F1U), FU2 (F2U) Fuse (3.15 A, 250 V)
15) LED A LED for service monitor (green)
16) V1, V2 Varistor

Caution Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

Note The symbols in the parenthesis are the names on the appropriate wiring diagram.
Sensor PCB (PCB1)

1) S49
Connector for control PCB (PCB2)

2) RTH2 (R1T)
Room temperature thermistor

![Sensor PCB Diagram](image)

Service PCB (PCB3)

1) S27
Connector for control PCB (PCB2)

2) SW2 (S2W)-4
Switch for upward airflow limit setting
* Refer to page 261 for details.
* Keep the other switches as factory setting.

3) SW4 (S4W)
Switch for airflow selection
* Refer to page 63 for details.

![Service PCB Diagram](image)

Display/Signal Receiver PCB (PCB4)

1) S47
Connector for control PCB (PCB2)

2) SW1 (S1W)
Indoor unit ON/OFF switch

3) LED1 (H1P)
LED for operation (green)

4) LED2 (H2P)
LED for timer (yellow)

![Display/Signal Receiver PCB Diagram](image)

* LED3 does not function.

Note
The symbols in the parenthesis are the names on the appropriate wiring diagram.
1.6 FDMQ09/12/15/18/24RVJU

Control PCB (A1P)

1) X15A Connector for float switch
2) X16A Connector for room temperature thermistor (suction air thermistor)
3) X17A, X18A Connector for indoor heat exchanger thermistor
4) X25A Connector for drain pump motor
5) X27A Connector for terminal block (for power supply)
6) X28A Connector for power supply wiring (option)
7) X30A Connector for terminal block (for wired remote controller)
8) X33A Connector for wiring (option)
9) X35A Connector for wiring adaptor (option)
10) X70A Connector for indoor fan PCB (A2P)
11) F1U Fuse (3.15 A, 250 V)
12) HAP LED for service monitor (green)
13) DS1 DIP switch for emergency
Indoor Fan PCB (A2P)

1) X3A Connector for control PCB (A1P)
2) X6A Connector for reactor
3) X8A Connector for indoor fan motor
4) X10A Connector for terminal block (for power supply)
5) F2U Fuse (5 A, 250 V)
6) F4U Fuse (6.3 A, 250 V)
7) HAP LED for service monitor (green)
1.7 FFQ09/12/15/18Q2VJU

Control PCB (A1P)

<table>
<thead>
<tr>
<th>No.</th>
<th>Connector</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>X15A</td>
<td>Connector for float switch</td>
</tr>
<tr>
<td>2)</td>
<td>X16A</td>
<td>Connector for room temperature thermistor (suction air thermistor)</td>
</tr>
<tr>
<td>3)</td>
<td>X17A, X18A</td>
<td>Connector for indoor heat exchanger thermistor</td>
</tr>
<tr>
<td>4)</td>
<td>X20A</td>
<td>Connector for DC fan motor</td>
</tr>
<tr>
<td>5)</td>
<td>X24A</td>
<td>Connector for transmitter board (when the wireless remote controller (option) is used)</td>
</tr>
<tr>
<td>6)</td>
<td>X25A</td>
<td>Connector for drain pump motor</td>
</tr>
<tr>
<td>7)</td>
<td>X27A</td>
<td>Connector for terminal block (for inter-unit wiring)</td>
</tr>
<tr>
<td>8)</td>
<td>X30A</td>
<td>Connector for terminal block (for wired remote controller)</td>
</tr>
<tr>
<td>9)</td>
<td>X33A</td>
<td>Connector for adaptor for wiring (option)</td>
</tr>
<tr>
<td>10)</td>
<td>X35A</td>
<td>Connector for wiring adaptor for electrical appendices (option)</td>
</tr>
<tr>
<td>11)</td>
<td>X36A</td>
<td>Connector for swing motors on decoration panel (option)</td>
</tr>
<tr>
<td>12)</td>
<td>X80A</td>
<td>Connector for decoration panel (BYFQ60B3W1) (option)</td>
</tr>
<tr>
<td>13)</td>
<td>X81A</td>
<td>Connector for sensor kit (BRYQ60A2W(S)) (option)</td>
</tr>
<tr>
<td>14)</td>
<td>HAP</td>
<td>LED for service monitor (green)</td>
</tr>
<tr>
<td>15)</td>
<td>DS1</td>
<td>DIP switch</td>
</tr>
<tr>
<td>16)</td>
<td>F1U</td>
<td>Fuse (5A, 250V)</td>
</tr>
</tbody>
</table>
2. Sensor Kit for FFQ Series
2.1 BRYQ60A2W(S)

Outline

Thermopile Sensor (A4P)

Pyroelectric Sensor (A5P)
3. Wired Remote Controller

3.1 BRC1E73

Wired Remote Controller PCB

1) P1, P2 Terminal for indoor unit
2) R4T Room temperature thermistor
4. Wireless Remote Controller Receiver for FDMQ series

4.1 BRC082A43

<table>
<thead>
<tr>
<th>Wired Remote Controller PCB</th>
<th>1) SS1</th>
<th>MAIN/SUB setting switch</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2) SS2</td>
<td>Address setting switch</td>
</tr>
<tr>
<td></td>
<td>3) P1, P2</td>
<td>Terminal for indoor unit control PCB (A1P)</td>
</tr>
</tbody>
</table>

* Refer to page 268 for details.
5. Wireless Remote Controller Kit for FFQ Series

5.1 BRC082A41W, BRC082A42W(S)

Transmitter Board (A2P)

1) X1A Connector for receiver (A3P)
2) X2A Connector for control PCB (A1P)
3) SS1 MAIN/SUB setting switch
 * Refer to page 271 for details.
4) SS2 Address setting switch
 * Refer to page 271 for details.

![Transmitter Board Diagram]

Receiver (A3P)

1) X1A Connector for transmitter board (A2P)
2) BS1 Emergency operation switch
3) LED1 (H1P) LED for operation (red)
4) LED2 (H2P) LED for timer (green)
5) LED3 (H3P) LED for filter cleaning sign (red)
6) LED4 (H4P) LED for defrost operation (orange)

![Receiver Board Diagram]

* LED5 and LED6 do not function.

Note: The symbols in the parenthesis are the names on the appropriate wiring diagram.
6. Outdoor Unit

Main PCB (PCB1)

<table>
<thead>
<tr>
<th></th>
<th>Connector Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>S, S10 Connector for terminal block (indoor - outdoor transmission)</td>
</tr>
<tr>
<td>2</td>
<td>S15 Connector for COOL/HEAT lock</td>
</tr>
<tr>
<td></td>
<td>* Refer to page 275 for details.</td>
</tr>
<tr>
<td>3</td>
<td>S20 (white) Connector for electronic expansion valve coil A port</td>
</tr>
<tr>
<td>4</td>
<td>S21 (red) Connector for electronic expansion valve coil B port</td>
</tr>
<tr>
<td>5</td>
<td>S22 (blue) Connector for electronic expansion valve coil C port</td>
</tr>
<tr>
<td>6</td>
<td>S23 (yellow) Connector for electronic expansion valve coil D port</td>
</tr>
<tr>
<td>7</td>
<td>S24 (white) Connector for electronic expansion valve coil E port (5MXS-T only)</td>
</tr>
<tr>
<td>8</td>
<td>S25 (red) Connector for electronic expansion valve coil for bypass circuit</td>
</tr>
<tr>
<td>9</td>
<td>S40 Connector for overload protector</td>
</tr>
<tr>
<td>10</td>
<td>S70 Connector for DC fan motor</td>
</tr>
<tr>
<td>11</td>
<td>S80 Connector for four way valve coil</td>
</tr>
<tr>
<td>12</td>
<td>S90 Connector for thermistors (outdoor temperature, outdoor heat exchanger, discharge pipe)</td>
</tr>
<tr>
<td>13</td>
<td>S92 Connector for gas pipe thermistor</td>
</tr>
<tr>
<td>14</td>
<td>S93 Connector for liquid pipe thermistor</td>
</tr>
<tr>
<td>15</td>
<td>S201, S202 Connector for service monitor PCB (PCB2)</td>
</tr>
<tr>
<td>16</td>
<td>HL1, HN1 Connector for terminal strip (power supply)</td>
</tr>
<tr>
<td>17</td>
<td>E1, E2, E3 Connector for ground wire</td>
</tr>
<tr>
<td>18</td>
<td>U, V, W Connector for compressor</td>
</tr>
<tr>
<td>19</td>
<td>FU1 Fuse (3.15 A, 250 V)</td>
</tr>
<tr>
<td>20</td>
<td>FU2 Fuse (5 A, 250 V)</td>
</tr>
<tr>
<td>21</td>
<td>FU3 Fuse (56 A, 250 V)</td>
</tr>
<tr>
<td>22</td>
<td>FU10 Fuse (10 A, 250 V)</td>
</tr>
<tr>
<td>23</td>
<td>V3, V4, V401 Varistor</td>
</tr>
</tbody>
</table>
Service Monitor PCB (PCB2)

1) S501, S502 Connector for main PCB (PCB1)
2) LED A LED for service monitor (green)
3) LED1, LED2, LED3, LED4, LED5 LED for service monitor (red)
4) SW1 Forced cooling operation ON/OFF switch
 * Refer to page 248 for details.
5) SW2 Operation mode switch
 * Refer to page 248 for details.
6) SW3 Wiring error check switch
 * Refer to page 249 for details.
7) SW4 Priority room setting switch
 * Refer to page 274 for details.
8) SW6-1 NIGHT QUIET mode setting switch
 * Refer to page 276 for details.

* SW6-2 and all the switches of SW5 have no function. Keep them OFF.
Part 4
Functions and Control

1. Common Functions .. 59
 1.1 Temperature Control .. 59
 1.2 Frequency Principle ... 59

2. RA Indoor Unit Functions ... 61
 2.1 Airflow Direction Control 61
 2.2 Fan Speed Control for Indoor Unit 64
 2.3 Program Dry Operation 65
 2.4 Automatic Cooling/Heating Changeover 66
 2.5 Thermostat Control .. 67
 2.6 NIGHT SET Mode ... 68
 2.7 ECONO Operation .. 69
 2.8 2-Area INTELLIGENT EYE Operation 70
 2.9 INTELLIGENT EYE Operation 72
 2.10 POWERFUL Operation 73
 2.11 Multi-Monitor Lamp/TIMER Lamp 74
 2.12 Clock Setting .. 75
 2.13 WEEKLY TIMER Operation 76
 2.14 Other Functions ... 82

3. SA Indoor Unit Functions ... 84
 3.1 Airflow Direction Control 84
 3.2 Fan Speed Control for Indoor Unit 85
 3.3 Program Dry Operation 86
 3.4 Clock and Calendar Setting (With Wired Remote Controller BRC1E73) ... 87
 3.5 Schedule TIMER Operation (With Wired Remote Controller BRC1E73) ... 89
 3.6 Setback Function (With Wired Remote Controller BRC1E73) 93
 3.7 Drain Pump Control .. 94
 3.8 Hot Start Control (In Heating Operation Only) 96
 3.9 Presence and Floor Sensors (Option) 97
 3.10 Other Functions ... 100

4. Control Specification .. 102
 4.1 Thermistor Functions .. 102
 4.2 Mode Hierarchy ... 104
 4.3 Frequency Control ... 105
 4.4 Controls at Mode Changing/Start-up 107
 4.5 Discharge Pipe Temperature Control 109
 4.6 Input Current Control 110
 4.7 Freeze-up Protection Control 111
 4.8 Heating Peak-cut Control 113
 4.9 Outdoor Fan Control 114
4.10 Liquid Compression Protection Function.. 114
4.11 Defrost Control ... 114
4.12 Low Hz High Pressure Limit... 116
4.13 Electronic Expansion Valve Control ... 116
4.14 Malfunctions .. 121
1. Common Functions
1.1 Temperature Control

Definitions of Temperatures

- Room temperature: temperature of lower part of the room
- Set temperature: temperature set by remote controller
- Room thermistor temperature: temperature detected by room temperature thermistor
- Target temperature: temperature determined by microcomputer

Temperature Control

The temperature of the room is detected by the room temperature thermistor. However, there is a difference between the temperature detected by room temperature thermistor and the temperature of lower part of the room, depending on the type of the indoor unit or installation condition. In practice, the temperature control is done by the target temperature appropriately adjusted for the indoor unit and the temperature detected by room temperature thermistor.

1.2 Frequency Principle

Control Parameters

- The frequency of the compressor is controlled by the following 2 parameters:
 - The load condition of the operating indoor unit
 - The difference between the room thermistor temperature and the target temperature

The target frequency is adapted by additional parameters in the following cases:

- Frequency restrictions
- Initial settings
- Forced cooling operation

Inverter Principle

To regulate the capacity, a frequency control is needed. The inverter makes it possible to control the rotation speed of the compressor. The followings explain the inverter principle:

Phase 1
The supplied AC power source is converted into the DC power source for the present.

Phase 2
The DC power source is reconverted into the three phase AC power source with variable frequency.
When the frequency increases, the rotation speed of the compressor increases resulting in an increase of refrigerant circulation. This leads to a larger amount of heat exchange per unit.

When the frequency decreases, the rotation speed of the compressor decreases resulting in a decrease of refrigerant circulation. This leads to a smaller amount of heat exchange per unit.

The following drawing shows a schematic view of the inverter principle:

Inverter Features
The inverter provides the following features:
- The regulating capacity can be changed according to the changes in the outdoor temperature and cooling/heating load.
- Quick heating and quick cooling
 The rotation speed of the compressor is increased when starting the heating (cooling). This enables to reach the set temperature quickly.
- Even during extreme cold weather, high capacity is achieved. It is maintained even when the outdoor temperature is 2°C (35.6°F).
- Comfortable air conditioning
 A fine adjustment is integrated to keep the room temperature constant.
- Energy saving heating and cooling
 Once the set temperature is reached, the energy saving operation enables to maintain the room temperature at low power.

Frequency Limits
The following functions regulate the minimum and maximum frequency:

Low frequency
- Four way valve operation compensation. Refer to page 107.

High frequency
- Compressor protection function. Refer to page 108.
- Discharge pipe temperature control. Refer to page 109.
- Input current control. Refer to page 110.
- Freeze-up protection control. Refer to page 111.
- Heating peak-cut control. Refer to page 113.
- Defrost control. Refer to page 114.

Forced Cooling Operation
Refer to page 248 for details.
2. RA Indoor Unit Functions

2.1 Airflow Direction Control

Power-Airflow
(Dual) Flap(s)
The large flap sends a large volume of air downward to the floor and provides an optimum control in cooling, dry and heating operation.

Cooling/Dry
During cooling or dry operation, the flap retracts into the indoor unit. Then, cool air can be blown far and distributed all over the room.

Heating
During heating operation, the large flap directs airflow downward to spread the warm air to the entire room.

Wide-Angle
Louvers
The louvers, made of elastic synthetic resin, provide a wide range of airflow that guarantees comfortable air distribution.

Auto-Swing
The following tables explain the auto-swing process for cooling, dry, heating and fan:

FTXR, CTXG series

<table>
<thead>
<tr>
<th>Flap (up and down)</th>
<th>Cooling/Dry</th>
<th>Heating</th>
<th>Fan</th>
<th>Louver (right and left)</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/12/18 class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30°</td>
<td>30°</td>
<td>25°</td>
<td>50°</td>
<td></td>
</tr>
<tr>
<td>50°</td>
<td>65°</td>
<td>50°</td>
<td>35°</td>
<td></td>
</tr>
</tbody>
</table>

CTXS, FTXS series

<table>
<thead>
<tr>
<th>Flap (up and down)</th>
<th>Cooling/Dry</th>
<th>Heating</th>
<th>Fan</th>
<th>Louver (right and left)</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/09/12 class</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15°</td>
<td>30°</td>
<td>5°</td>
<td>60°</td>
<td></td>
</tr>
<tr>
<td>35°</td>
<td>30°</td>
<td>65°</td>
<td>45°</td>
<td></td>
</tr>
<tr>
<td>55°</td>
<td>70°</td>
<td>80°</td>
<td>45°</td>
<td></td>
</tr>
</tbody>
</table>

15/18/24 class	![Diagram](R9303)	![Diagram](R9304)	![Diagram](R9305)	![Diagram](R9306)
15°	30°	15°	50°	
25°	40°	25°	60°	
75°	70°	75°	45°	
FVXS series

<table>
<thead>
<tr>
<th>Flap (up and down)</th>
<th>Cooling/Dry</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upward airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limit OFF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upward airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>limit ON</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3-D Airflow

FTXR, CTXG, CTXS, FTXS Series

Alternative repetition of vertical and horizontal swing motions enables uniform air-conditioning of the entire room.

When the horizontal swing and vertical swing are both set to automatic operation, the airflow becomes 3-D airflow. The horizontal and vertical swing motions are alternated and the airflow direction changes in the order shown in the following diagram.

1. The vertical blades (louvers) move from the right to the left.
2. The horizontal blades (flaps) move downward.
3. The vertical blades (louvers) move from the left to the right.
4. The horizontal blades (flaps) move upward.

(R19554)

COMFORT AIRFLOW Operation

FTXR, CTXG, CTXS, FTXS Series

The flaps are controlled not to blow the air directly at the people in the room.

The airflow will be in the upward direction while in cooling operation and in the downward direction while in heating operation, which will provide a comfortable wind that will not come in direct contact with people.
Airflow Selection Setting

FVXS Series

Airflow direction can be set with the airflow selection switch.

- Open the front panel.

Caution

Before opening the front panel, be sure to stop the operation and turn the breaker off. Do not touch the aluminum fins (indoor heat exchanger) inside the indoor unit, as it may result in injury.

When setting the airflow selection switch to 🔐.

- The air conditioner automatically decides the appropriate blowing pattern depending on the operating mode/situation.

<table>
<thead>
<tr>
<th>Operating mode</th>
<th>Situation</th>
<th>Blowing pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling operation</td>
<td>When the room has become fully cool, or when 1 hour has passed since turning on the air conditioner.</td>
<td>Air is blown from the upper air outlet, so that air does not come into direct contact with people, and room temperature is equalized.</td>
</tr>
<tr>
<td></td>
<td>At the start of operation or when the room is not fully cooled.</td>
<td></td>
</tr>
<tr>
<td>Heating operation</td>
<td>Normal time</td>
<td></td>
</tr>
<tr>
<td></td>
<td>At the start or when air temperature is low.</td>
<td>Air is blown from the upper air outlet, so that air does not come into direct contact with people.</td>
</tr>
</tbody>
</table>

- During dry operation, air is blown from upper air outlet, so that cold air does not come into direct contact with people.

When setting the airflow selection switch to 🔐.

- Regardless of the operating mode or situation, air is blown from the upper air outlet.
- Use this switch when you do not want air coming out of the lower air outlet (e.g., while sleeping).
2.2 Fan Speed Control for Indoor Unit

Outline
Phase control and fan speed control contains 9 steps: LLL, LL, SL, L, ML, M, MH, H, and HH. The airflow rate can be automatically controlled depending on the difference between the room thermistor temperature and the target temperature.

Automatic Fan Speed Control
In automatic fan speed operation, the step SL is not available.

<table>
<thead>
<tr>
<th>Step</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>LLL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ML</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HH (POWERFUL)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

↔️ = The airflow rate is automatically controlled within this range when FAN setting button is set to automatic.

Cooling
The following drawing explains the principle of fan speed control for cooling.

Room thermistor temperature – target temperature

- The upper limit is at M tap in 30 minutes from the operation start.

Heating
In heating operation, the fan speed is regulated according to the indoor heat exchanger temperature and the difference between the room thermistor temperature and the target temperature.

Note(s)
The fan stops during defrost operation.

COMFORT AIRFLOW Operation
FTXR, CTXG, CTXS, FTXS Series
- The fan speed is controlled automatically within the following steps.
 - **Cooling**
 - L tap ~ MH tap (same as AUTOMATIC)
 - **Heating**
 - In order to obtain a comfortable airflow, the fan speed may be set to a rate different from automatic fan speed control.
- The latest command has the priority between POWERFUL and COMFORT AIRFLOW.
2.3 Program Dry Operation

Outline
Program dry operation removes humidity while preventing the room temperature from lowering. Since the microcomputer controls both the temperature and airflow rate, the temperature adjustment and FAN setting buttons are inoperable.

Details
The microcomputer automatically sets the temperature and airflow rate. The difference between the room thermistor temperature at start-up and the target temperature is divided into two zones. Then, the unit operates in an appropriate capacity for each zone to maintain the temperature and humidity at a comfortable level.

<table>
<thead>
<tr>
<th>Room thermistor temperature at start-up</th>
<th>Target temperature X</th>
<th>Thermostat OFF point Y</th>
<th>Thermostat ON point Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>24°C or more (75.2°F or more)</td>
<td>Room thermistor temperature at start-up</td>
<td>X – 2.5°C (X – 4.5°F)</td>
<td>X – 0.5°C (X – 0.9°F)</td>
</tr>
<tr>
<td>18 ~ 23.5°C (64.4 ~ 74.3°F)</td>
<td></td>
<td>X – 2.0°C (X – 3.6°F)</td>
<td>X – 0.5°C (X – 0.9°F)</td>
</tr>
<tr>
<td>17.5°C or less (63.5°F or less)</td>
<td>18°C (64.4°F)</td>
<td>X – 2.0°C (X – 3.6°F)</td>
<td>X – 0.5°C = 17.5°C (X – 0.9°F = 63.5°F)</td>
</tr>
</tbody>
</table>

★ Thermostat turns on also when the room temperature is in the zone B for 10 minutes.
2.4 Automatic Cooling/Heating Changeover

Outline
When the automatic operation is selected with the remote controller, the microcomputer automatically determines the operation mode as cooling or heating according to the room temperature and the set temperature at start-up. The unit automatically switches the operation mode to maintain the room temperature at the set temperature.

Details
Ts: set temperature (set by remote controller)
Tt: target temperature (determined by microcomputer)
Tr: room thermistor temperature (detected by room temperature thermistor)
C: correction value

1. The set temperature (Ts) determines the target temperature (Tt).
 \(Ts = 18 \sim 30°C \) \((64.4 \sim 86°F) \)

2. The target temperature (Tt) is calculated as;
 \[Tt = Ts + C \]
 where C is the correction value.
 \[C = 0°C \] \((0°F) \)

3. Thermostat ON/OFF point and operation mode switching point are as follows.
 (1) Heating → Cooling switching point:
 \(Tr \geq Tt + 3.0°C \) \((+5.4°F) \) (FTXR, CTXG, CTXS, FTXS series)
 \(Tr \geq Tt + 2.5°C \) \((+4.5°F) \) (FDXS, CDXS, FVXS series)
 (2) Cooling → Heating switching point:
 \(Tr < Tt - 2.5°C \) \((-4.5°F) \) (FTXR, CTXG series)
 \(Tr < Tt - 3.0°C \) \((-5.4°F) \) (CTXS, FTXS, FDXS, CDXS, FVXS series)
 (3) Thermostat ON/OFF point is the same as the ON/OFF point of cooling or heating operation.

4. During initial operation
 \(Tr \geq Ts \): Cooling operation
 \(Tr < Ts \): Heating operation

FTXR, CTXG Series

Ex: When the target temperature is 25°C (77°F)
Cooling → 23°C (73.4°F): Thermostat OFF → 22.5°C (72.5°F): Switch to heating
Heating → 26.5°C (79.7°F): Thermostat OFF → 28°C (82.4°F): Switch to cooling

CTXS, FTXS Series

Ex: When the target temperature is 25°C (77°F)
Cooling → 23°C (73.4°F): Thermostat OFF → 22°C (71.6°F): Switch to heating
Heating → 27°C (80.6°F): Thermostat OFF → 28°C (82.4°F): Switch to cooling
FDXS, CDXS, FVXS Series

Ex: When the target temperature is 25°C (77°F)
Cooling → 23°C (73.4°F): Thermostat OFF → 22°C (71.6°F): Switch to heating
Heating → 26.5°C (79.7°F): Thermostat OFF → 27.5°C (81.5°F): Switch to cooling

2.5 Thermostat Control

Outline
Thermostat control is based on the difference between the room thermistor temperature and the target temperature.

Details

Thermostat OFF Conditions
- The temperature difference is in the zone A.

Thermostat ON Conditions
- The temperature difference returns to the zone C after being in the zone A.
- The system resumes from defrost control in any zones except A.
- The operation turns on in any zones except A.
- The monitoring time has passed while the temperature difference is in the zone B.
 (Cooling: 10 minutes, Heating: 10 seconds)

Cooling

Room thermistor temperature – target temperature
- Zone C: 1.0°C (~1.8°F)
- Zone B: 2.0°C (~3.6°F)
- Zone A: 3.0°C (~5.4°F)

Heating

FTXR, CTXG Series

Room thermistor temperature – target temperature
- Zone A: 1.5°C (2.7°F)
- Zone B: 0.5°C (0.9°F)
- Zone C: 0°C (0°F)
2.6 NIGHT SET Mode

Outline
When the OFF TIMER is set, NIGHT SET mode is automatically activated. NIGHT SET mode keeps the airflow rate setting.

Details
NIGHT SET mode continues operation at the target temperature for the first one hour, then automatically raises the target temperature slightly in the case of cooling, or lowers the target temperature slightly in the case of heating. This prevents excessive cooling in summer and excessive heating in winter to ensure comfortable sleeping conditions, and also conserves electricity.

Cooling

- Target temperature
- 0.5°C (0.9°F) temperature shift
- Operation stops at the set hour

Heating

- Target temperature
- 2°C (3.6°F) temperature shift
2.7 ECONO Operation

Outline

ECONO operation reduces the maximum operating current and the power consumption. This operation is particularly convenient for energy-saving. It is also a major bonus when breaker capacity does not allow the use of multiple electrical devices and air conditioners. It can be easily activated by pressing **ECONO** button on the wireless remote controller.

Details

- When this function is activated, the maximum capacity also decreases.
- The remote controller can send the ECONO command when the unit is in cooling, heating, dry, or automatic operation. This function can only be set when the unit is running. Pressing **ON/OFF** button on the remote controller cancels the function.
- This function and **POWERFUL** operation cannot be used at the same time. The latest command has the priority.

![Graph showing power consumption and current comparison between Normal operation and ECONO operation](R22012)
2.8 2-Area INTELLIGENT EYE Operation

Applicable Models
- FTXR09/12TVJUW(S)
- CTXG09/12QVJUW(S)

Outline
The following functions can be performed by the microcomputer and a motion sensor.
1. Reduction of the capacity when there is nobody in the room in order to save electricity (energy saving operation)
2. Dividing the room into plural areas and detecting presence of humans in each area. Moving the airflow direction to the area with no human automatically to avoid direct airflow on humans.

Details

1. **INTELLIGENT EYE detection method**
 - The motion sensor detects human motion by receiving infrared rays and sends the pulse wave output.
 - The microcomputer in the indoor unit carries out a sampling every 20 msec. If the motion sensor detects 10 times or more of the wave output in one second in total, and the High signal continues for 3 sec., the microcomputer judges humans are in the room.
 - 2-area INTELLIGENT EYE motion sensor divides the area into 2 and detects presence of humans in each area.

Image of 2-area INTELLIGENT EYE

- The motion sensor detects human motion by receiving infrared rays and sends the pulse wave output.
- The microcomputer in the indoor unit carries out a sampling every 20 msec. If the motion sensor detects 10 times or more of the wave output in one second in total, and the High signal continues for 3 sec., the microcomputer judges humans are in the room.
- 2-area INTELLIGENT EYE motion sensor divides the area into 2 and detects presence of humans in each area.
2. Motions (in cooling)

- In FAN operation, the fan speed is reduced by 60 rpm when no one is in the area.
- When there is no signal from the motion sensor in 20 minutes, the microcomputer judges that nobody is in the room and operates the unit at a temperature shifted from the target temperature. (Cooling/Dry: 1 ~ 2°C (1.8 ~ 3.6°F) higher, Heating: 2°C (3.6°F) lower, Auto: according to the operation mode at that time)

3. Airflow direction in 2-area INTELLIGENT EYE operation

- Detection method: The opposite area of detected area is set as the target direction.

1. Human detection signal ON in both areas A and B: Shift the airflow direction to area B (left side)
2. Human detection signal ON in area A: Shift the airflow direction to area B (left side)
3. Human detection signal ON in area B: Shift the airflow direction to area A (right side)
4. Human detection signal OFF in both areas A and B: No change

- When the human detection signal is OFF for 20 minutes in both areas A and B, the unit starts energy saving operation.

Note(s)

For dry operation, the temperature cannot be set with a remote controller, but the target temperature is shifted internally.
2.9 INTELLIGENT EYE Operation

Applicable Models
- CTXS07LVJU
- FTXS09/12/15/18/24LVJU

Outline
The microcomputer detects the presence of humans in the room with a motion sensor and reduces the capacity when there is nobody in the room in order to save electricity.

Details

1. **INTELLIGENT EYE detection method**
 - The motion sensor detects human motion by receiving infrared rays and sends the pulse wave output.
 - The microcomputer in the indoor unit carries out a sampling every 20 msec. If the motion sensor detects 10 times or more of the wave output in one second in total, and the High signal continues for 3 sec., the microcomputer judges humans are in the room as the human detection signal is ON.

 ![Diagram](image)

 - If the motion sensor detects the outputs 10 times/sec. or more, the microcomputer judges the detection signal from the motion sensor is High.
 - If the detection signal (High) continues for 3 sec. or more, the microcomputer judges humans are in the room.

2. **Motions (in cooling)**
 - In FAN operation, the fan speed is reduced by 60 rpm when no one is in the area.
 - When there is no signal from the motion sensor in 20 minutes, the microcomputer judges that nobody is in the room and operates the unit at a temperature shifted from the target temperature. (Cooling/Dry: 1 ~ 2°C (1.8 ~ 3.6 °F) higher, Heating: 2°C (3.6°F) lower, Auto: according to the operation mode at that time)
Note(s) For dry operation, the temperature cannot be set with a remote controller, but the target temperature is shifted internally.

2.10 POWERFUL Operation

Outline In order to exploit the cooling and heating capacity to full extent, the air conditioner can be operated by increasing the indoor fan rotating speed and the compressor frequency.

Details When POWERFUL button is pressed, the fan speed and target temperature are converted to the following states for 20 minutes.

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Fan speed</th>
<th>Target temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOL</td>
<td>H tap + A rpm</td>
<td>18°C (64.4°F)</td>
</tr>
<tr>
<td>DRY</td>
<td>Dry rotating speed + A rpm</td>
<td>Lowered by 2 ~ 2.5°C (3.6 ~ 4.5°F)</td>
</tr>
<tr>
<td>HEAT</td>
<td>H tap + A rpm</td>
<td>30 ~ 31.5°C (86 ~ 88.7°F)</td>
</tr>
<tr>
<td>FAN</td>
<td>H tap + A rpm</td>
<td>—</td>
</tr>
<tr>
<td>AUTO</td>
<td>Same as cooling/heating in POWERFUL operation</td>
<td>The target temperature is kept unchanged.</td>
</tr>
</tbody>
</table>

A = 50 ~ 90 rpm (depending on the model)

Ex: POWERFUL operation in cooling

Note(s) ■ During POWERFUL operation, the cooling/heating efficiency of the other rooms may be slightly reduced.
 ■ POWERFUL operation cannot be used together with ECONO, COMFORT AIRFLOW or OUTDOOR UNIT QUIET operation.
2.11 Multi-Monitor Lamp/TIMER Lamp

Applicable Models
- FTXR09/12/18TVJUW(S)
- CTXG09/12/18QVJUW(S)

Features
Current operation mode is displayed in color of the lamp of the indoor unit. Operating status can be monitored even in automatic operation in accordance with the actual operation mode.

The lamp color changes according to the operation.
- AUTO..Red/Blue
- DRY..Green
- COOL..Blue
- HEAT...Red
- FAN...White
- TIMER...Orange

Brightness Setting
Each time Brightness button on the remote controller is pressed, the brightness of the multi-monitor lamp changes to high, low, or off.
2.12 Clock Setting

The clock can be set by taking the following steps:

1. Press CLOCK button.
 → 0:00 is displayed, then MON and 0 blink.
2. Press SELECT ▲ or SELECT ▼ button to set the clock to the current day of the week.
3. Press CLOCK button.
 → 0 blinks.
4. Press SELECT ▲ or SELECT ▼ button to set the clock to the present time.
 Holding down SELECT ▲ or SELECT ▼ button rapidly increases or decreases the time display.
5. Press CLOCK button to set the clock. Point the remote controller at the indoor unit when pressing the button.
 → , blinks and clock setting is completed.

< ARC452 Series >

< ARC466 Series >
2.13 WEEKLY TIMER Operation

Applicable Models
- FTXR09/12/18TVJUW(S)
- CTXG09/12/18QVJUW(S)
- CTXS07LVJU
- FTXS09/12/15/18/24LVJU
- FVXS09/12/15/18NVJU

Outline
Up to 4 timer settings can be saved for each day of the week (up to 28 settings in total).
The 3 items: ON/OFF, temperature, and time can be set.

Details
★ The illustrations are for FTXR and CTXG series as representative.

Setting example of the WEEKLY TIMER

The same timer settings are used from Monday through Friday, while different timer settings are used for the weekend.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>ON</td>
</tr>
<tr>
<td>6:00</td>
<td>17:30</td>
</tr>
<tr>
<td>77°F (25°C)</td>
<td>81°F (27°C)</td>
</tr>
<tr>
<td>Program 2</td>
<td>OFF</td>
</tr>
<tr>
<td>8:30</td>
<td>22:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Tuesday] to [Friday]</th>
<th>Use the copy mode to make settings for Tuesday to Friday, because these settings are the same as those for Monday.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>ON</td>
</tr>
<tr>
<td>6:00</td>
<td>17:30</td>
</tr>
<tr>
<td>77°F (25°C)</td>
<td>81°F (27°C)</td>
</tr>
<tr>
<td>Program 2</td>
<td>OFF</td>
</tr>
<tr>
<td>8:30</td>
<td>22:00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[Saturday]</th>
<th>No timer settings</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>ON</td>
</tr>
<tr>
<td>6:00</td>
<td>16:00</td>
</tr>
<tr>
<td>77°F (25°C)</td>
<td>81°F (27°C)</td>
</tr>
<tr>
<td>Program 2</td>
<td>OFF</td>
</tr>
<tr>
<td>10:00</td>
<td>21:00</td>
</tr>
<tr>
<td>Program 3</td>
<td>OFF</td>
</tr>
<tr>
<td>19:00</td>
<td></td>
</tr>
<tr>
<td>Program 4</td>
<td>ON</td>
</tr>
<tr>
<td>21:00</td>
<td></td>
</tr>
</tbody>
</table>

- Up to 4 reservations per day and 28 reservations per week can be set using the WEEKLY TIMER. The effective use of the copy mode simplifies timer programming.
- The use of ON-ON-ON-ON settings, for example, makes it possible to schedule operating mode and set temperature changes. Furthermore, by using OFF-OFF-OFF-OFF settings, only the turn off time of each day can be set. This will turn off the air conditioner automatically if you forget to turn it off.
To use WEEKLY TIMER operation

Setting mode

- Make sure the day of the week and time are set. If not, set the day of the week and time.

<table>
<thead>
<tr>
<th>Program 1</th>
<th>Program 2</th>
<th>Program 3</th>
<th>Program 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON 6:00</td>
<td>OFF 8:30</td>
<td>ON 17:30</td>
<td>OFF 22:00</td>
</tr>
<tr>
<td>77°F (25°C)</td>
<td>81°F (27°C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Setting Displays

- Day and number
- ON/OFF
- Time
- Temperature

1. Press .
 - The day of the week and the reservation number of the current day will be displayed.
 - 1 to 4 settings can be made per day.

2. Press to select the desired day of the week and reservation number.
 - Pressing changes the reservation number and the day of the week.

3. Press .
 - The day of the week and reservation number will be set.
 - "ON WEEKLY" and "ON" blink.

4. Press to select the desired mode.
 - Pressing changes the "ON" or "OFF" setting in sequence.
 - In case the reservation has already been set, selecting "blank" deletes the reservation.
 - Proceed to STEP 9 if "blank" is selected.
 - To return to the day of the week and reservation number setting, press .

5. Press .
 - The ON/OFF TIMER mode will be set.
 - "ON WEEKLY" and the time blink.
6. Press \(\text{ } \) to select the desired time.
- The time can be set between 0:00 and 23:59 in 10-minute intervals.
- To return to the ON/OFF TIMER mode setting, press \(\text{ } \).
- Proceed to \textbf{STEP 9} when setting the OFF TIMER.

7. Press \(\text{Next} \) .
- The time will be set.
- “ON/OFF” and the temperature blink.

8. Press \(\text{ } \) to select the desired temperature.
- The temperature can be set between 50°F (10°C) and 90°F (32°C).
 - COOL or AUTO: The unit operates at 64°F (18°C) even if it is set at 50°F (10°C) to 63°F (17°C).
 - HEAT or AUTO: The unit operates at 86°F (30°C) even if it is set at 87°F (31°C) to 90°F (32°C).
- To return to the time setting, press \(\text{ } \).
- The set temperature is only displayed when the mode setting is on.

9. Press \(\text{Next} \) .
- Be sure to direct the remote controller toward the indoor unit and check for a receiving tone and blinking of the multi-monitor lamp.
- The multi-monitor lamp blinks twice.
- The temperature will be set and go to the next reservation.
- Temperature and time are set in the case of ON TIMER operation, and the time is set in the case of OFF TIMER operation.
- The next reservation screen will appear.
- To continue further settings, repeat the procedure from \textbf{STEP 4}.

10. Press \(\text{ } \) to complete the setting.
- “ON/OFF” is displayed on the LCD and WEEKLY TIMER operation is activated.
- The TIMER lamp periodically lights orange.
 The multi-monitor lamp will not light orange if all the reservation settings are deleted.

NOTE
- **Do not forget to set the clock on the remote controller first.**
- The day of the week, ON/OFF TIMER mode, time and set temperature (only for ON TIMER mode) can be set with the WEEKLY TIMER.
- Other settings for the ON TIMER are based on the settings just before the operation.
- WEEKLY TIMER and ON/OFF TIMER operation cannot be used at the same time. The ON/OFF TIMER operation has priority if it is set while WEEKLY TIMER is still active. The WEEKLY TIMER will enter the standby state, and \(\text{ } \) will disappear from the LCD. When the ON/OFF TIMER is up, the WEEKLY TIMER will automatically become active.
- Only the time and temperature can be set with the WEEKLY TIMER. Set the WEEKLY TIMER only after setting the operation mode, the airflow rate and the airflow direction ahead of time.
- Turning off the circuit breaker, power failure, and other similar events will render operation of the indoor unit's internal clock inaccurate. Reset the clock.
- \(\text{ } \) can be used only for the time and temperature settings. It cannot be used to go back to the reservation number.
Copy mode

- A reservation made once can be copied to another day of the week. The whole reservation of the selected day of the week will be copied.

```
[Monday]

<table>
<thead>
<tr>
<th>Program</th>
<th>6:00</th>
<th>8:30</th>
<th>17:30</th>
<th>22:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 2</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 3</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 4</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature: 77°F (25°C)
```

```
[Tuesday] to [Friday]

<table>
<thead>
<tr>
<th>Program</th>
<th>6:00</th>
<th>8:30</th>
<th>17:30</th>
<th>22:00</th>
</tr>
</thead>
<tbody>
<tr>
<td>Program 1</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 2</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 3</td>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Program 4</td>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Temperature: 81°F (27°C)
```

Setting Displays

- Confirmation
- Copy
- Paste
- Normal

1. Press \(\bigtriangleup \).

2. Press \(\bigtriangleup \) to confirm the day of the week to be copied.

3. Press \(\bigtriangleup \).

 - The whole reservation of the selected day of the week will be copied.

4. Press \(\bigtriangleup \) to select the destination day of the week.

5. Press \(\bigtriangleup \).

 - Be sure to direct the remote controller toward the indoor unit and check for a receiving tone and blinking of the multi-monitor lamp.
 - The multi-monitor lamp blinks twice.
 - The reservation will be copied to the selected day of the week. The whole reservation of the selected day of the week will be copied.
 - To continue copying the settings to other days of the week, repeat STEP 4 and STEP 5.

6. Press \(\bigtriangleup \) to complete the setting.

 - "COPY" is displayed on the LCD and WEEKLY TIMER operation is activated.
 - The TIMER lamp periodically lights orange.

NOTE

Note on COPY MODE

- The entire reservation of the source day of the week is copied in the copy mode.
- In the case of making a reservation change for any day of the week individually after copying the content of weekly reservations, press \(\bigtriangleup \) and change the settings in the steps of Setting mode.
Confirming a reservation

- The reservation can be confirmed.

Setting Displays

Normal Confirmation

1. Press .
- The day of the week and the reservation number of the current day will be displayed.

2. Press to select the day of the week and the reservation number to be confirmed.
- Pressing displays the reservation details.
- To change the confirmed reserved settings, select the reservation number and press .
- The mode is switched to setting mode. Proceed to Setting mode STEP 4.

3. Press to exit the confirmation mode.
- " WEEKLY " is displayed on the LCD and WEEKLY TIMER operation is activated.
- The TIMER lamp periodically lights orange.
- The multi-monitor lamp will not light orange if all the reservation settings are deleted.

To deactivate WEEKLY TIMER operation

- Press Weekly while “ WEEKLY ” is displayed on the LCD.
- " WEEKLY " disappears from the LCD.
- The TIMER lamp goes off.
- To reactivate the WEEKLY TIMER operation, press Weekly again.
- If a reservation deactivated with Weekly is activated once again, the last reservation mode will be used.

NOTE

- If not all the reservation settings are reflected, deactivate the WEEKLY TIMER operation once. Then press Weekly again to reactivate the WEEKLY TIMER operation.
To delete reservations

An individual reservation

1. Press .
 • The day of the week and the reservation number will be displayed.

2. Press to select the day of the week and the reservation number to be deleted.

3. Press Next.
 • and "ON" or "OFF" blink.

4. Press until no icon is displayed.
 • Pressing changes the ON/OFF TIMER mode in sequence.
 • Selecting "blank" will cancel any reservation you may have.

5. Press Next.
 • The selected reservation will be deleted.
 • Be sure to direct the remote controller toward the indoor unit and check for a receiving tone and blinking of the multi-monitor lamp.

6. Press .
 • If there are still other reservations, WEEKLY TIMER operation will be activated.

Reservations for each day of the week

• This function can be used for deleting reservations for each day of the week.
• It can be used while confirming or setting reservations.

1. Press .
 • The day of the week and the reservation number will be displayed.

2. Press to select the day of the week to be deleted.

3. Hold for about 5 seconds.
 • Be sure to direct the remote controller toward the indoor unit and check for a receiving tone and blinking of the multi-monitor lamp.
 • The reservation of the selected day of the week will be deleted.

4. Press .
 • If there are still other reservations, WEEKLY TIMER operation will be activated.

All reservations

Hold for about 5 seconds with the normal display.

• Be sure to direct the remote controller toward the indoor unit and check for a receiving tone and blinking of the multi-monitor lamp.
• The TIMER lamp goes off.
• This operation cannot be used for the WEEKLY TIMER setting display.
• All reservations will be deleted.
2.14 Other Functions

2.14.1 Hot-Start Function
In order to prevent the cold air blast that normally occurs when heating operation is started, the temperature of the indoor heat exchanger is detected, and the airflow is either stopped or significantly weakened resulting in comfortable heating.

Note(s)
The cold air blast is prevented using similar control when defrost control starts or when the thermostat is turned ON.

2.14.2 Signal Receiving Sign
When the indoor unit receives a signal from the remote controller, the unit emits a signal receiving sound and the operation lamp blinks.

2.14.3 Indoor Unit ON/OFF Switch

ON/OFF switch is provided on the display of the unit.
- Press **ON/OFF** switch once to start operation. Press once again to stop it.
- **ON/OFF** switch is useful when the remote controller is missing or the battery has run out.

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>Temperature setting</th>
<th>Airflow rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>25°C (77°F)</td>
<td>Automatic</td>
</tr>
</tbody>
</table>

- In the case of multi system operation, there are times when the unit does not activate with **ON/OFF** switch.

FTXR/CTXG Series

CTXS/FTXS Series

FDXS/CDXS Series
2.14.4 Auto-restart Function

If a power failure (even a momentary one) occurs during the operation, the system restarts automatically in the same conditions as before when the power supply is restored to the conditions prior to the power failure.

Note
It takes 3 minutes to restart the operation because 3-minute standby function is activated.
3. SA Indoor Unit Functions

3.1 Airflow Direction Control

Applicable Models

| FFQ09/12/15/18Q2VJU |

Outline

There are two types of airflow direction settings.

- **Automatic swing setting**
 The flaps automatically oscillate up and down.

 ![Diagram of Automatic Swing](Diagram.png)

- **Airflow direction fixed setting**
 You can select from one of the fixed directions.
 The display of the remote controller and the actual angle of the flap do not match.

 ![Diagram of Fixed Direction](Diagram.png)

Flaps Movement

Under the operating conditions shown below, airflow direction is controlled automatically. Actual operation may be different from what is displayed on the remote controller.

- Room temperature is higher than the remote controller’s set temperature in heating operation.
- When defrosting in heating operation. The airflow is discharged horizontally to avoid blowing cold air directly on the room occupants.
- Under continuous operation with the airflow discharging horizontally.

Individual Flap Control

With decoration panel (BYFQ60C2W1W(S)) and wired remote controller (BRC1E73), you can control each one of the four flaps individually. The following marks are beside each air outlet: □, □□, □□□, □□□□.
3.2 Fan Speed Control for Indoor Unit

- **With Wired Remote Controller (BRC1E73)**

 To change the fan speed, press **Fan Speed** button and select the fan speed from Low/Medium/High/Auto.

 - Auto cannot be selected if the indoor unit does not have Auto Fan speed function.
 - The system may change the fan speed automatically for equipment protection purposes.
 - The system may turn off the fan when the room temperature is satisfied.
 - It is normal for a delay to occur when changing the fan speed.
 - If the Auto is selected for the fan speed, the fan speed varies automatically based on the difference between set temperature and room temperature.

- **With Wireless Remote Controller (BRC082A43, BRC082A41W, BRC082A42W(S))**

 Press **FAN SPEED CONTROL** button.

 High, Medium or Low fan speed can be selected.

 The microchip may sometimes control the fan speed in order to protect the unit.
3.3 Program Dry Operation

Outline
Program dry operation removes humidity while preventing the room temperature from lowering. Since the microcomputer controls both the temperature and airflow rate, the temperature adjustment and FAN setting buttons are inoperable.

Details
The microcomputer automatically sets the temperature and airflow rate. The difference between the room thermistor temperature at start-up and the target temperature is divided into two zones. Then, the unit operates in an appropriate capacity for each zone to maintain the temperature and humidity at a comfortable level.

<table>
<thead>
<tr>
<th>Room thermistor temperature at start-up</th>
<th>Target temperature X</th>
<th>Thermostat OFF point Y</th>
<th>Thermostat ON point Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5°C or more (76.1°F or more)</td>
<td>Room thermistor temperature at start-up</td>
<td>X – 2.5°C (X – 4.5°F)</td>
<td>X – 1.0°C (X – 1.8°F)</td>
</tr>
<tr>
<td>16.5°C – 24°C (61.7°C – 75.2°F)</td>
<td>X – 2.0°C (X – 3.6°F)</td>
<td>X – 1.0°C (X – 1.8°F)</td>
<td></td>
</tr>
<tr>
<td>16°C or less (60.8°F or less)</td>
<td>16°C (60.8°F)</td>
<td>X – 2.0°C (X – 3.6°F)</td>
<td>X – 1.0°C = 15°C (X – 1.8°F = 59°F)</td>
</tr>
</tbody>
</table>
3.4 Clock and Calendar Setting (With Wired Remote Controller BRC1E73)

1. Press Menu/OK button to display the main menu screen.
 - Press ▼ buttons to select Clock & Calendar on the main menu screen.
 - Press Menu/OK button to display the clock & calendar screen.

2. Press ▼ buttons to select Date & Time on the clock & calendar screen.
 - Press Menu/OK button to display the date & time screen.

3. Select Year with ◀▶ buttons.
 - Change the year with ▼ buttons.
 - Holding down the button causes the number to change continuously.

4. Select Month with ◀▶ buttons.
 - Change the month with ▼ buttons.
 - Holding down the button causes the number to change continuously.

5. Select Day with ◀▶ buttons.
 - Change the day with ▼ buttons.
 - Holding down the button causes the number to change continuously.
 - Days of the week change automatically.

(R24368)
Select **Hour** with
buttons. Change the hour with
buttons. Holding down the button causes the number to change continuously.

Select **Minute** with
buttons. Change the minute with
buttons. Holding down the button causes the number to change continuously.

Press **Menu/OK** button. The confirmation screen will appear.

Note:

The date can be set between January 1, 2015 and December 31, 2099.

Press
button to select **Yes** on the confirmation screen. Press **Menu/OK** button to confirm the clock and return to the basic screen.

* When setting the schedule, the display returns to the settings screen.
3.5 Schedule TIMER Operation (With Wired Remote Controller BRC1E73)

Outline
Day settings are selected from 4 patterns:
- 7 Days
- Weekday/Sat/Sun
- Weekday/Weekend
- Everyday

Up to 5 actions can be set for each day.

Details
Set the startup time and operation stop time.

ON: Startup time, cooling and heating temperature setpoints can be configured.
OFF: Operation stop time, cooling and heating setback temperature setpoints can be configured.

(→: Indicates that the setback function is disabled for this time period.)

___: Indicates that the temperature setpoint and setback temperature setpoint for this time period is not specified. The last active setpoint will be utilized.

Reference
Refer to Setback function on page 93 for details of setback function (FFQ series only).

Setting the schedule

1. Press Menu/OK button to display the main menu screen.
2. Press buttons to select Schedule.
3. Press Menu/OK button to display the schedule screen.
4. Before setting the schedule, the clock must be set.
5. If the clock has not been set, a screen like the one on the left will appear. Press buttons to select Yes and press Menu/OK button.
6. The date & time screen will appear.
7. Set the current year, month, day, and time.
8. Press buttons to select the desired function on the schedule screen and press Menu/OK button.
Daily Patterns

1. The schedule screen will appear.
 - Press \(\textup{▲} \) buttons to select \textbf{Daily Patterns} on the schedule screen.
 - The daily patterns screen will appear when \textbf{Menu/OK} button is pressed.

2. Press \(\textup{▲} \) buttons to select \textbf{7 Days, Weekday/Sat/Sun, Weekday/Weekend, or Everyday} on the daily patterns screen.
 - The confirmation screen will appear when \textbf{Menu/OK} button is pressed.

3. Press \(\textup{◄} \) buttons to select \textbf{Yes} on the confirmation screen.
 - Pressing \textbf{Menu/OK} button enters the daily patterns in the schedule and takes you back to the main menu screen.
Settings

1. The schedule screen will appear.
 - Press \(\downarrow \uparrow \) buttons to select **Settings** on the schedule screen. The settings screen will appear when **Menu/OK** button is pressed.

2. Press \(\downarrow \uparrow \) buttons to select the day to be set.
 - * It cannot be selected in the case of EVDY.

3. Input the time for the selected day.
 - Press \(\uparrow \downarrow \) buttons to move the highlighted item and press \(\downarrow \uparrow \) buttons to input the desired operation start time.
 - Each press of \(\downarrow \uparrow \) buttons moves the numbers by 1 hour or 1 minute.

R4003456
Press buttons to move the highlighted item and press buttons to configure ON/OFF/-- settings. --, ON, or OFF changes in sequence when buttons are pressed.

---: The temperature setpoints and setback temperature setpoints become disabled.

---: Indicates that the temperature setpoint and setback temperature setpoint for this time period is not specified. The last active setpoint will be utilized.

--: Indicates that the setback function is disabled for this time period.

A maximum of five actions per day can be set.

Press Menu/OK button when settings for each day are completed. The confirmation screen will appear.

To copy the settings for the previous day, press Mode button so that the existing settings will be copied.

Example: The contents for Monday are copied by pressing Mode button after selecting Tuesday.

Press buttons to select Yes on the confirmation screen. Pressing Menu/OK button confirms the settings for each day and takes you back to the basic screen.
3.6 Setback Function (With Wired Remote Controller BRC1E73)

Applicable Models
FFQ09/12/15/18Q2VJU

Outline
The Setback function can be used to maintain the space temperature in an assigned range for an unoccupied period.

Details
The setback icon flashes on the LCD of wired remote controller when the unit is turned on by the setback control.

- When enabled, the Setback mode becomes active when the indoor unit is turned off by either the user, a schedule event or an off timer.
- Setback function is not available by default. It can be enabled by the system installer.
3.7 Drain Pump Control

Normal Operation

- The float switch is ON in normal operation.
- When cooling operation starts (thermostat ON), the drain pump turns ON simultaneously.
- After the thermostat turns OFF, the drain pump continues to operate.

If Float Switch is OFF with Thermostat ON in Cooling Operation

- When the float switch stays OFF for 5 sec., the thermostat turns OFF.
- After the thermostat turns OFF, the drain pump continues to operate for another 5 minutes.

 1. If the float switch turns ON again during the residual operation of the drain pump, cooling operation also turns on again (thermostat ON).
 2. If the float switch remains OFF even after the residual operation of the drain pump has ended, the error code A3 is determined.
 3. The drain pump turns OFF once residual operation has ended, then turns ON again after 5 seconds.
 4. After A3 is determined and the unit comes to an abnormal stop, the thermostat will remain OFF even if the float switch turns ON again.
If Float Switch is OFF with Thermostat OFF in Cooling Operation

- When the float switch stays OFF for 5 sec., the drain pump turns ON.
- If the float switch remains OFF even after the residual operation of the drain pump has ended, the error code A3 is determined.
- The drain pump turns OFF once residual operation has ended, then turns ON again after 5 seconds.

If Float Switch Turns ON and OFF Continuously, or Float Switch Turns OFF While AF Displayed

- When the float switch stays OFF for 5 sec., the drain pump turns ON.
- If the float switch continues to turn OFF and ON 5 times consecutively, it is judged as a drain system error and the error code AF is determined.
- The drain pump continues to turn ON/OFF in accordance with the float switch ON/OFF even after AF is determined.
- While the error code AF is displayed, if the float switch remains OFF even after the residual operation of the drain pump has ended, the error code A3 will be determined.
3.8 Hot Start Control (In Heating Operation Only)

Outline
At startup with thermostat ON or after the completion of defrosting in heating operation, the indoor unit fan is controlled to prevent cold air from blasting out and ensure startup capacity.

Details

Defrost ending or oil return ending or Thermostat ON

Hot start ending conditions
- Lapse of 3 minutes
- \(TH_3 > 37°C \) (98.6°F)

<table>
<thead>
<tr>
<th>Hot start control</th>
<th>Hot start in progress</th>
<th>Normal operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan H/M/L remote controller setting</td>
<td>LL</td>
<td>OFF</td>
</tr>
<tr>
<td>The fan is OFF before initiating the hot start: OFF</td>
<td>The fan is NOT OFF before initiating the hot start: LL</td>
<td></td>
</tr>
<tr>
<td>Remote controller setting</td>
<td>Normal operation</td>
<td></td>
</tr>
<tr>
<td>Level position</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(TH_3 \): Temperature detected by the indoor heat exchanger thermistor (R3T)
3.9 Presence and Floor Sensors (Option)

Applicable Models
FFQ09/12/15/18Q2VJU

Outline
With the human presence signal and the floor temperature signal from the optional sensor kit, the system provides the energy saving control, or the comfortable temperature control and airflow direction control preventing the direct draft to the human.

To use sensor related functions, a wired remote controller (BRC1E73) and optional sensor kit (BRYQ60A2W(S)) are necessary to be installed.

Details
1. Draft prevention (with presence sensor)
When the sensor detects human presence during auto-swing operation, the system sets the airflow direction parallel to the floor (position 0) to reduce unpleasant draft.

The operation returns to the normal auto-swing as the sensor detects no human in the room.

- Draft prevention is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and draft prevention is set to “enabled” on the wired remote controller.
- Factory setting is “disabled”.
- Draft prevention cannot be activated when individual flap control is set, even if draft prevention is enabled on the wired remote controller.

Setting on the wired remote controller

1. Press Menu/OK button to display the main menu screen.
2. Press ▼ buttons to select Configuration and press Menu/OK button.
4. Press ▼ buttons to select Enable.
5. The confirmation screen will appear when Menu/OK button is pressed.
6. Press ▼ buttons to select Yes.
7. Press Menu/OK button to confirm the settings and to return to the basic screen.
2. Auto-setback by sensor (with presence sensor)
After pre-determined time has elapsed without detection of human presence, the unit automatically shifts the target temperature gradually for energy saving.
The target temperature displayed on the remote controller remains same as the initial set value during the above change of target temperature.
The target temperature shifts within the range of the highest programmable temperature while in cooling operation and the lowest programmable temperature while in heating operation.
Upon human detection, the target temperature returns to the original setting.

- Auto-setback by sensor is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and auto-setback by sensor is set to “enabled” on the wired remote controller.
- Factory setting is “disabled”.

Setting on the remote controller

1. Press Cancel button for 4 seconds on the basic screen to display Service Settings menu.
2. Press ▼ buttons to select Energy Saving Options.
3. Press Menu/OK button to display Energy Saving Options menu.

2. Press ▼ buttons to select Auto-setback by Sensor.
3. Press Menu/OK button to display Auto-setback by Sensor menu.

3. Press ▼ buttons to select Enable/Disable.
4. Press Menu/OK button after selecting the item. Then the confirmation screen is displayed.

4. Press ▼ buttons to select Enable.
5. Press Menu/OK button to confirm the settings and to return to the Service Settings menu.
3. Auto-off by sensor (with presence sensor)

After pre-determined time has elapsed without detection of human presence, the unit automatically stops operation. The auto-off time can be set between 1-24 hours by the hour. Once the unit stops operation by auto-off function, the system would not restart even if the human is detected again.

- Auto-off by sensor is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and auto-off by sensor is set to "enabled" on the wired remote controller.
- Factory setting is "disabled".

Setting on the remote controller

1. Press **Cancel** button for 4 seconds on the basic screen to display Service Settings menu.
2. Press **▼** buttons to select **Energy Saving Options**.
3. Press **Menu/OK** button to display Energy Saving Options menu.
4. Press **▼** buttons to select **Auto-off by Sensor**.
5. Press **Menu/OK** button to display Auto-off by Sensor menu.
6. Press **▼** buttons to select **Enable**.
7. Press **▼** buttons to go into the auto-off time setting.
8. Press **▼** buttons to set auto-off hour(s) (1 ~ 24).
9. Press **Menu/OK** button. Then the confirmation screen is displayed.
10. Press **▼** buttons to select **Yes**.
11. Press **Menu/OK** button to confirm the settings and to return to the Service Settings menu.
4. Room temperature adjustment by sensing (with floor sensor)
The system uses living space temperature calculated from temperatures detected by room
temperature thermistor (suction air thermistor in the indoor unit) and floor sensor, as the target
temperature.
Operation becomes more optimized by using not only suction air temperature but floor temperature.

- This function is enabled when decoration panel BYFQ60C2WAW(S) and sensor kit
 BRYQ60A2W(S) is connected to the main unit.

3.10 Other Functions

3.10.1 Signal Receiving Sign
When the indoor unit receives a signal from the remote controller, the unit emits a signal receiving
sound.

3.10.2 Auto-restart Function
If a power failure (even a momentary one) occurs during the operation, the system restarts
automatically in the same conditions as before when the power supply is restored to the conditions
prior to the power failure.

Note
It takes 3 minutes to restart the operation because 3-minute standby function is activated.

3.10.3 Emergency Operation Switch (With Wireless Remote Controller)

Outline
When the wireless remote controller does not work due to battery failure or the absence thereof,
use the emergency operation switch.

Details
Start
Press emergency operation switch.
- The indoor unit runs in the previous operation mode.
- The system operates with the previously set airflow direction (FFQ series only).

Stop
Press emergency operation switch again.

FDMQ Series
Emergency operation switch

(R24077)
4. Control Specification

4.1 Thermistor Functions

The illustration is for the 4-room models as representative and have 4 lines of indoor unit system (A ~ D).

The 5-room models have 5 lines (A ~ E).

(1) Discharge Pipe Thermistor
- The discharge pipe thermistor is used for controlling discharge pipe temperature. If the discharge pipe temperature (used in place of the inner temperature of the compressor) rises abnormally, the operating frequency becomes lower or the operation halts.
- The discharge pipe thermistor is used for detecting disconnection of the discharge pipe thermistor.

(2) Outdoor Heat Exchanger Thermistor
- The outdoor heat exchanger thermistor is used for controlling the target discharge pipe temperature. The system sets the target discharge pipe temperature according to the outdoor and indoor heat exchanger temperature, and controls the electronic expansion valve opening so that the target discharge pipe temperature can be obtained.
- In cooling operation, the outdoor heat exchanger thermistor is used for detecting the disconnection of the discharge pipe thermistor. When the discharge pipe temperature drops below the outdoor heat exchanger temperature by more than a certain value, the discharge pipe thermistor is judged as disconnected.
- In cooling operation, the outdoor heat exchanger thermistor is used for high pressure protection.

(3) Outdoor Temperature Thermistor
- The outdoor temperature thermistor detects the outdoor air temperature and is used for refrigerant shortage detection, input current control, outdoor fan control, liquid compression protection function, and so on.

(4) Gas Pipe Thermistor
- In cooling operation, the gas pipe thermistor is used for gas pipe isothermal control. The system controls electronic expansion valve opening so that the gas pipe temperature in each room becomes equal.

(5) Liquid Pipe Thermistor
- Liquid pipe thermistor is used to protect the compressor against liquid attack during cooling operation.
In case of low outdoor temperature operation, the system compares the indoor heat exchanger temperature with the liquid pipe temperature to detect disturbances in the refrigerant flow. If any, the system adjusts the opening of the electronic expansion valve to control the refrigerant flow.

When only one indoor unit is in heating operation, the liquid pipe thermistor is used for subcooling control. The actual subcool is calculated with the liquid pipe temperature and the maximum indoor heat exchanger temperature. The system controls the electronic expansion valve openings to obtain the target subcool.

In heating operation, the liquid pipe thermistor is used for liquid pipe isothermal control. The system controls the electronic expansion valve opening so that the liquid pipe temperatures in each room becomes equal.

The indoor heat exchanger thermistor is used for controlling the target discharge pipe temperature. The system sets the target discharge pipe temperature according to the outdoor and indoor heat exchanger temperature, and controls the electronic expansion valve opening so that the target discharge pipe temperature can be obtained.

In cooling operation, the indoor heat exchanger thermistor is used for freeze-up protection control. If the indoor heat exchanger temperature drops abnormally, the operating frequency becomes lower or the operation halts.

In cooling operation, the indoor heat exchanger thermistor is used for anti-icing function. If any of the following conditions are met in the room where operation halts, it is assumed as icing. The conditions are:
\[T_c \leq -1°C \quad (30.2°F) \]
\[T_a - T_c \geq 10°C \quad (18°F) \]
where \(T_a \) is the room temperature and \(T_c \) is the indoor heat exchanger temperature.

The indoor heat exchanger thermistor is used for wiring error check function. The refrigerant flows in order from the port A to detect the indoor heat exchanger temperature one by one, and then wiring and piping can be checked.

In heating operation, the indoor heat exchanger thermistor is used for heating peak-cut control. If the indoor heat exchanger temperature rises abnormally, the operating frequency becomes lower or the operation halts.

In heating operation, the indoor heat exchanger thermistor is used for detecting the disconnection of the discharge pipe thermistor. When the discharge pipe temperature drops below the highest indoor heat exchanger temperature by more than a certain value, the discharge pipe thermistor is judged as disconnected.

Excluding the case that all the indoor units are in heating operation, the indoor heat exchanger thermistor is used for subcooling control. The actual subcool is calculated with the liquid pipe temperature and the indoor heat exchanger temperature. The system controls the electronic expansion valve openings to obtain the target subcool.

The room temperature thermistor detects the room air temperature and is used for controlling the room air temperature.

Note(s)

The refrigerant circuit has a fusible plug. In order to prevent the increase of pressure when abnormal heating is caused by fire or others, the fusible part of the plug is molten at a temperature of 70 - 75°C (158 - 167°F) to release the pressure into the atmosphere.
4.2 Mode Hierarchy

Outline
The air conditioner control has normal operation mode, forced operation mode, and power transistor test mode for installation and servicing.

Details

- Unless specified otherwise, dry operation command is regarded as cooling operation.
- Indoor fan operation cannot be made in multiple indoor units. (A forced fan command is made during forced cooling operation.)

Determine Operation Mode
The system judges the operation mode command which is set by each room in accordance with the procedure, and determines the operation mode of the system.
The following procedure is taken when the modes conflict with each other.
 *1. The system follows the mode which is set first. (First-push, first-set)
 *2. For the rooms where the different mode is set, standby mode is activated. (The operation lamp blinks.)
4.3 Frequency Control

Outline
Frequency corresponding to each room’s capacity is determined according to the difference between the target temperature and the temperature of each room.

When the shift of the frequency is less than zero (ΔF<0) by PI control, the target frequency is used as the command frequency.

Details
The compressor’s frequency is determined by taking the following steps.

1. **Determine command frequency**
 Command frequency is determined in the following order of priority.
 (1) Limiting defrost control time
 (2) Forced cooling/heating
 (3) Indoor frequency command

2. **Determine upper limit frequency**
 The minimum value is set as the upper limit frequency among the frequency upper limits of the following functions:
 Compressor protection, input current, discharge pipe temperature, low Hz high pressure limit, heating peak-cut, freeze-up protection, defrost.

3. **Determine lower limit frequency**
 The maximum value is set as the lower limit frequency among the frequency lower limits of the following function:
 Four way valve operation compensation, draft prevention, pressure difference upkeep.

4. **Determine prohibited frequency**
 There is a certain prohibited frequency such as a power supply frequency.

Parameters

Q value
Indoor unit output determined from indoor unit volume, airflow rate and other factors.

S value: Indoor Unit Capacity
S value is the capacity of the indoor unit, and is used for frequency command.
Ex:

<table>
<thead>
<tr>
<th>Capacity</th>
<th>S value</th>
<th>Capacity</th>
<th>S value</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 kBtu/h</td>
<td>20</td>
<td>15 kBtu/h</td>
<td>50</td>
</tr>
<tr>
<td>9 kBtu/h</td>
<td>25</td>
<td>18 kBtu/h</td>
<td>60</td>
</tr>
<tr>
<td>12 kBtu/h</td>
<td>35</td>
<td>24 kBtu/h</td>
<td>71</td>
</tr>
</tbody>
</table>
ΔD signal: Indoor frequency command
The difference between the room thermistor temperature and the target temperature is taken as the ΔD value and is used for ΔD signal of frequency command.

<table>
<thead>
<tr>
<th>Temperature difference</th>
<th>ΔD signal</th>
<th>Temperature difference</th>
<th>ΔD signal</th>
<th>Temperature difference</th>
<th>ΔD signal</th>
<th>Temperature difference</th>
<th>ΔD signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2.0°C (–3.6°F)</td>
<td>+OFF</td>
<td>0°C (0°F)</td>
<td>4</td>
<td>2.0°C (3.6°F)</td>
<td>8</td>
<td>4.0°C (7.2°F)</td>
<td>12</td>
</tr>
<tr>
<td>–1.5°C (–2.7°F)</td>
<td>1</td>
<td>0.5°C (0.9°F)</td>
<td>5</td>
<td>2.5°C (4.5°F)</td>
<td>9</td>
<td>4.5°C (8.1°F)</td>
<td>13</td>
</tr>
<tr>
<td>–1.0°C (–1.8°F)</td>
<td>2</td>
<td>1.0°C (1.8°F)</td>
<td>6</td>
<td>3.0°C (5.4°F)</td>
<td>10</td>
<td>5.0°C (9.0°F)</td>
<td>14</td>
</tr>
<tr>
<td>–0.5°C (–0.9°F)</td>
<td>3</td>
<td>1.5°C (2.7°F)</td>
<td>7</td>
<td>3.5°C (6.3°F)</td>
<td>11</td>
<td>5.5°C (9.9°F)</td>
<td>15</td>
</tr>
</tbody>
</table>

Values depend on the type of indoor unit.
∗ OFF = Thermostat OFF

Initial Frequency
When starting the compressor, or when conditions are varied due to a change of operating rooms, the frequency must be initialized according to a total of the maximum ΔD value of each room and a total Q value (ΣQ) of the operating room (the room in which the thermostat is set to ON).

PI Control
1. **P control**
 Max ΔD value is calculated in each sampling time (15 seconds), and the frequency is adjusted according to its difference from the frequency previously calculated.

2. **I control**
 If the operating frequency does not change for more than a certain fixed time, the frequency is adjusted according to max ΔD value.
 When max ΔD value is low, the frequency is lowered.
 When max ΔD value is high, the frequency is increased.

3. **Frequency control when other controls are functioning**
 - When frequency is dropping:
 Frequency control is carried out only when the frequency drops.
 - For limiting lower limit:
 Frequency control is carried out only when the frequency rises.

4. **Upper and lower limit of frequency by PI control**
 The frequency upper and lower limits are set according to the total of S values. When the indoor unit quiet operation commands come from all the rooms or when the outdoor unit quiet operation commands come from all the rooms, the upper limit frequency is lower than the usual setting.
4.4 Controls at Mode Changing/Start-up

4.4.1 Preheating Control

Outline The inverter operation in open phase starts with the conditions of the outdoor temperature and the preheating command from the indoor unit.

Details
ON Condition
- When the outdoor temperature is below 6°C (42.8°F), the inverter operation in open phase starts.

OFF Condition
- When the outdoor temperature is higher than 7.5°C (45.5°F), the inverter operation in open phase stops.

4.4.2 Four Way Valve Switching

Outline The four way valve coil is energized/not energized depending on the operation mode (Heating: ON, Cooling/Dry/Defrost: OFF). In order to eliminate the switching sound as the four way valve coil switches from ON to OFF when the heating is stopped, the OFF delay switch of the four way valve is carried out.

Details
OFF delay switch of four way valve
The four way valve coil is energized for 150 seconds after the operation is stopped.

4.4.3 Four Way Valve Operation Compensation

Outline At the beginning of operation as the four way valve is switched, the pressure difference to activate the four way valve is acquired when the output frequency is higher than a certain fixed frequency, for a certain fixed time.

Details
Starting Conditions
- The compressor starts and the four way valve switches from OFF to ON
- The four way valve switches from ON to OFF during operation
- The compressor starts after resetting
- The compressor starts after the fault of four way valve switching

The lower limit of frequency keeps A Hz for 70 seconds for any of the conditions above.

<table>
<thead>
<tr>
<th>A (Hz)</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>26</td>
</tr>
</tbody>
</table>

4.4.4 3-Minute Standby

Turning on the compressor is prohibited for 3 minutes after turning off.
(The function is not used when defrosting.)
4.4.5 Compressor Protection Function

When turning the compressor from OFF to ON, the upper limit of frequency is set as follows. (The function is not used when defrosting.)

![Graph showing the frequency and time intervals for cooling and heating modes.]

<table>
<thead>
<tr>
<th></th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Hz)</td>
<td>35</td>
<td>23</td>
</tr>
<tr>
<td>B (Hz)</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>C (Hz)</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>D (Hz)</td>
<td>83</td>
<td>83</td>
</tr>
<tr>
<td>E (Hz)</td>
<td>95</td>
<td>95</td>
</tr>
<tr>
<td>F (seconds)</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>G (seconds)</td>
<td>270 ~ 420</td>
<td></td>
</tr>
<tr>
<td>H (seconds)</td>
<td>290 ~ 450</td>
<td></td>
</tr>
<tr>
<td>J (seconds)</td>
<td>170 ~ 250</td>
<td></td>
</tr>
<tr>
<td>K (seconds)</td>
<td>150 ~ 220</td>
<td></td>
</tr>
</tbody>
</table>
4.5 Discharge Pipe Temperature Control

Outline

The discharge pipe temperature is used as the internal temperature of the compressor. If the discharge pipe temperature rises above a certain level, the upper limit of frequency is set to keep the discharge pipe temperature from rising further.

Details

<table>
<thead>
<tr>
<th>Zone</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop zone</td>
<td>When the temperature reaches the stop zone, the compressor stops.</td>
</tr>
<tr>
<td>Dropping zone</td>
<td>The upper limit of frequency decreases.</td>
</tr>
<tr>
<td>Keep zone</td>
<td>The upper limit of frequency is kept.</td>
</tr>
<tr>
<td>Reset zone</td>
<td>The upper limit of frequency is canceled.</td>
</tr>
</tbody>
</table>

Discharge pipe temperature

A 120°C (248°F)
B 111°C (231.8°F)
C 109°C (228.2°F)
D 107°C (224.6°F)
E 107°C (224.6°F)
4.6 Input Current Control

Outline
The microcomputer calculates the input current while the compressor is running, and sets the frequency upper limit based on the input current.
In case of heat pump models, this control is the upper limit control of the frequency and takes priority over the lower limit control of four way valve operation compensation.

Details

Frequency control in each zone

Stop zone
- After the input current remains in the stop zone for 2.5 seconds, the compressor is stopped.

Dropping zone
- The upper limit of the compressor frequency is defined as operation frequency – 2 Hz.
- After this, the output frequency is lowered by 2 Hz every second until it reaches the keep zone.

Keep zone
- The present maximum frequency goes on.

Reset zone
- Limit of the frequency is canceled.

<table>
<thead>
<tr>
<th></th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (A)</td>
<td>27.5</td>
<td>29</td>
</tr>
<tr>
<td>B (A)</td>
<td>25.5</td>
<td>27</td>
</tr>
<tr>
<td>C (A)</td>
<td>24.5</td>
<td>26</td>
</tr>
</tbody>
</table>

Limitation of current dropping and stop value according to the outdoor temperature
The current drops when outdoor temperature becomes higher than a certain level (depending on the model).
4.7 Freeze-up Protection Control

4.7.1 Freeze-up Protection Control (Except FDMQ Series)

Applicable Models
- FTXR09/12/18TVJUW(S)
- CTXG09/12/18QVJUW(S)
- CTXS07LVJU
- FTXS09/12/15/18/24LVJU
- FDXS09/12LVJU
- CDXS15/18/24LVJU
- FVXS09/12/15/18NVJU
- FFQ09/12/15/18Q2VJU

Outline
During cooling operation, the signal sent from the indoor unit determines the frequency upper limit and prevents freezing of the indoor heat exchanger. The signals from the indoor unit is divided into zones.

Details
The operating frequency limitation is judged with the indoor heat exchanger temperature.

(Reference)

Indoor heat exchanger temperature (R2T)

- **13°C** (55.4°F) - **Reset zone**
- **9.5°C** (49.1°F) - **Up zone**
- **7.5°C** (45.5°F) - **Keep zone**
- **5.5°C** (41.9°F) - **Dropping zone**
- **0°C** (32°F) - **Stop zone**

R4003451
4.7.2 Freeze-up Protection Control for FDMQ Series

Outline
During cooling operation, the signal sent from the indoor unit determines the frequency upper limit and prevents the indoor heat exchanger from freezing.

Details
When the freeze-up protection control starts, the compressor stops, the airflow rate is fixed to L tap, and the drain pump turns ON. Conditions for starting and ending are as below.

Starting conditions
The freeze-up protection control starts when any of the following conditions is satisfied.
- The indoor heat exchanger temperature remains at A or lower for 1 minute.
- The accumulated time that the indoor heat exchanger temperature remains at B or lower reaches 40 minutes.

Accumulated timer clearing condition
- The indoor heat exchanger temperature remains at C or higher for 20 minutes.

Ending condition
- The indoor heat exchanger temperature remains at D or higher for 10 minutes.

<table>
<thead>
<tr>
<th>Indoor heat exchanger temperature</th>
<th>(°C)</th>
<th>(°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>−5</td>
<td>23.0</td>
</tr>
<tr>
<td>B</td>
<td>−1</td>
<td>30.2</td>
</tr>
<tr>
<td>C</td>
<td>4</td>
<td>39.2</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>44.6</td>
</tr>
</tbody>
</table>
4.8 Heating Peak-cut Control

Outline
During heating operation, the indoor heat exchanger temperature determines the frequency upper limit to prevent abnormal high pressure.

Details
- The operating frequency is judged with the indoor heat exchanger temperature 2 minutes after the operation starts and F seconds after the number of the rooms in operation is changed.
- The maximum value of the indoor heat exchanger temperature controls the following (excluding the rooms not in operation).

<table>
<thead>
<tr>
<th>Zone</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop zone</td>
<td>When the temperature reaches the stop zone, the compressor stops.</td>
</tr>
<tr>
<td>Dropping zone</td>
<td>The upper limit of frequency decreases.</td>
</tr>
<tr>
<td>Keep zone</td>
<td>The upper limit of frequency is kept.</td>
</tr>
<tr>
<td>Up zone</td>
<td>The upper limit of frequency increases.</td>
</tr>
<tr>
<td>Reset zone</td>
<td>The upper limit of frequency is canceled.</td>
</tr>
</tbody>
</table>

- A 62.5°C (144.5°F)
- B 54°C (129.2°F)
- C 53°C (127.4°F)
- D 51°C (123.8°F)
- E 49°C (120.2°F)

<table>
<thead>
<tr>
<th>F (seconds)</th>
<th>When increase</th>
<th>When decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>30</td>
<td>2</td>
</tr>
</tbody>
</table>
4.9 Outdoor Fan Control

1. Fan OFF control during defrosting
 The outdoor fan is turned OFF while defrosting.

2. Fan OFF delay when stopped
 The outdoor fan is turned OFF 60 seconds after the compressor stops.

3. Fan speed control for pressure difference upkeep
 The rotation speed of the outdoor fan is controlled for keeping the pressure difference during cooling operation with low outdoor temperature.
 - When the pressure difference is low, the rotation speed of the outdoor fan is reduced.
 - When the pressure difference is high, the rotation speed of the outdoor fan is controlled as well as normal operation.

4. Fan control when the number of heating room decreases
 When the outdoor temperature is more than 10°C (50°F), the fan is turned off for 30 seconds.

5. Fan speed control during forced cooling operation
 The outdoor fan is controlled as well as normal operation during forced cooling operation.

6. Fan speed control for POWERFUL operation
 The rotation speed of the outdoor fan is increased during POWERFUL operation.

7. Fan speed control during indoor/outdoor unit quiet operation
 The rotation speed of the outdoor fan is reduced by the command of the indoor/outdoor unit quiet operation.

8. Fan ON/OFF control when operation (cooling, heating, dry) starts/stops
 The outdoor fan is turned ON when the operation starts. The outdoor fan is turned OFF when the operation stops.

4.10 Liquid Compression Protection Function

Outline
The compressor stops according to the outdoor temperature for protection.

Details
Operation stops depending on the outdoor temperature. The compressor turns off under the conditions that the system is in cooling operation and the outdoor temperature is below –12°C (10.4°F).

4.11 Defrost Control

Outline
Defrosting is carried out by the cooling cycle (reverse cycle). The defrosting time or outdoor heat exchanger temperature must be more than a certain value to finish defrosting.

Details

Conditions for Starting Defrost
- The starting conditions are determined with the outdoor temperature and the outdoor heat exchanger temperature.
- The system is in heating operation.
- The compressor operates for 6 minutes.
- More than A minutes of accumulated time have passed after the start of the operation, or ending the previous defrosting.

Conditions for Canceling Defrost
The judgment is made with the outdoor heat exchanger temperature. (B°C (C°F))
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (minutes)</td>
<td>30</td>
</tr>
<tr>
<td>B (°C)</td>
<td>4 ~ 12</td>
</tr>
<tr>
<td>C (°F)</td>
<td>39.2 ~ 53.6</td>
</tr>
<tr>
<td>D (Hz)</td>
<td>43</td>
</tr>
<tr>
<td>E (Hz)</td>
<td>72</td>
</tr>
<tr>
<td>F (seconds)</td>
<td>60</td>
</tr>
<tr>
<td>G (seconds)</td>
<td>120</td>
</tr>
<tr>
<td>H (seconds)</td>
<td>650</td>
</tr>
<tr>
<td>J (seconds)</td>
<td>60</td>
</tr>
<tr>
<td>K (pulse)</td>
<td>480</td>
</tr>
<tr>
<td>L (pulse)</td>
<td>480</td>
</tr>
<tr>
<td>M (pulse)</td>
<td>480</td>
</tr>
<tr>
<td>N (pulse)</td>
<td>480</td>
</tr>
<tr>
<td>P (pulse)</td>
<td>240</td>
</tr>
<tr>
<td>Q (pulse)</td>
<td>240</td>
</tr>
</tbody>
</table>
4.12 Low Hz High Pressure Limit

Outline
The system controls the upper limit of the frequency to prevent abnormal high pressure while the frequency is low. Control is carried out according to three zones.

Details

Temperature varies depending on the outdoor heat exchanger temperature.

4.13 Electronic Expansion Valve Control

Outline
The following items are included in the electronic expansion valve control.

Electronic expansion valve is fully closed
1. Electronic expansion valve is fully closed when turning on the power.
2. Pressure equalizing control

Room Distribution Control
1. Gas pipe isothermal control
2. SC (subcooling) control
3. Liquid pipe temperature control (with all ports connected and all rooms being air-conditioned)
4. Liquid pipe temperature control for rooms not in operation
5. Dew prevention control for indoor rotor

Open Control
1. Electronic expansion valve control when starting operation
2. Electronic expansion valve control when the frequency changes
3. Electronic expansion valve control for defrosting
4. Electronic expansion valve control for oil recovery
5. Electronic expansion valve control when a discharge pipe temperature is abnormally high
6. Electronic expansion valve control when the discharge pipe thermistor is disconnected
7. Electronic expansion valve control for indoor unit anti-icing control

Feedback Control
Target discharge pipe temperature control
Details

The following are the examples of the electronic expansion valve control for each operation mode.

<table>
<thead>
<tr>
<th>Operation pattern</th>
<th>Gas pipe isothermal control</th>
<th>SC (subcooling) control</th>
<th>Control when the frequency changes</th>
<th>Control for abnormally high discharge pipe temperature</th>
<th>Oil recovery control</th>
<th>Liquid pipe temperature control for non-operating units</th>
<th>Liquid pipe temperature control for indoor rotor</th>
<th>Dew prevention control for indoor rotor</th>
</tr>
</thead>
<tbody>
<tr>
<td>When power is turned on</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cooling, 1 room operation</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cooling, 2 rooms operation to</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Cooling, 4 rooms operation</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating, 1 room operation</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating, 2 rooms operation</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Stop</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Heating operation</td>
<td></td>
<td>—</td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Discharge pipe thermistor</td>
<td></td>
<td></td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>disconnection control</td>
<td></td>
<td></td>
<td>—</td>
<td>• • • •</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>

★1: When all the indoor units are operating, liquid pipe temperature control is conducted.
★2: SC (subcooling) control is conducted for the operating indoor units, when some of the units are not operating.
★3: Liquid pipe temperature control for stopped room is conducted for the non-operating indoor units.
4.13.1 Initialization as Power Supply On
The electronic expansion valve is initialized (fully closed) when the power is turned on. Then, the valve opening position is set and the pressure is equalized.

4.13.2 Pressure Equalizing Control
When the compressor is stopped, the pressure equalizing control is activated. The electronic expansion valve opens, and develops the pressure equalization.

4.13.3 Opening Limit Control
The maximum and minimum opening of the electronic expansion valve are limited.

- The maximum electronic expansion valve opening in the room in operation: 480 pulses
- The minimum electronic expansion valve opening in the room in operation: 60 pulses

The electronic expansion valve is fully closed in the room where cooling is stopped and is opened at a fixed degree during defrosting.

4.13.4 Starting Operation Control/Changing Operation Room
The electronic expansion valve opening is controlled when the operation starts, thus preventing superheating or liquid compression.

4.13.5 Control when the Frequency Changes
When the target discharge pipe temperature control is active, if the target frequency changes to a specified value in a certain period of time, the target discharge pipe temperature control is canceled and the target opening of the electronic expansion valve is changed.

4.13.6 Oil Recovery Function

<table>
<thead>
<tr>
<th>Outline</th>
<th>The electronic expansion valve opening for the room not in operation is set as to open for a certain time at a specified interval so that the oil for the room not in operation may not be accumulated.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Details</td>
<td>During cooling operation, the electronic expansion valve for the room not in operation is opened every 1 hour by 80 pulses for specified time.</td>
</tr>
</tbody>
</table>

4.13.7 High Discharge Pipe Temperature Control
When the compressor is operating, if the discharge pipe temperature exceeds a certain value, the electronic expansion valve opens and the refrigerant runs to the low pressure side. This procedure lowers the discharge pipe temperature.
4.13.8 Discharge Pipe Thermistor Disconnection Control

Outline
The disconnection of the discharge pipe thermistor is detected by comparing the discharge pipe temperature with the condensing temperature. If the discharge pipe thermistor is disconnected, the electronic expansion valve opens according to the outdoor temperature and the operation frequency, operates for a specified time, and then stops. After 3 minutes, the operation restarts and checks if the discharge pipe thermistor is disconnected. If the discharge pipe thermistor is disconnected, the system stops after operating for a specified time. If the disconnection is detected repeatedly, the system is shut down. When the compressor runs for 60 minutes without any error, the error counter is reset.

Details
Determining thermistor disconnection
When the starting control (930 seconds) finishes, the following adjustment is made.
1. When the operation mode is cooling
 - When the following condition is fulfilled, the discharge pipe thermistor disconnection is ascertained.
 - Discharge pipe temperature + 6°C (10.8°F) < outdoor heat exchanger temperature
2. When the operation mode is heating
 - When the following condition is fulfilled, the discharge pipe thermistor disconnection is ascertained.
 - Discharge pipe temperature + 6°C (10.8°F) < highest indoor heat exchanger temperature

When the thermistor is disconnected
When the disconnection is ascertained, the compressor continues operation for 9 minutes and then stops.

4.13.9 Gas Pipe Isothermal Control During Cooling
When the units are operating in multiple rooms, the gas pipe temperature is detected and the electronic expansion valve opening is adjusted so that the temperature of the gas pipe in each room becomes equal.
- When the gas pipe temperature > the average gas pipe temperature, → the opening degree of electronic expansion valve for the corresponding room increases.
- When the gas pipe temperature < the average gas pipe temperature, → the opening degree of electronic expansion valve for the corresponding room decreases.
The temperatures are monitored every 30 seconds.

4.13.10 SC (Subcooling) Control

Outline
The liquid pipe temperature and the heat exchanger temperature are detected and the electronic expansion valve opening is compensated so that the SC of each room becomes the target SC.
- When the actual SC > target SC, open the electronic expansion valve of the room.
- When the actual SC < target SC, close the electronic expansion valve of the room.

Details
Start Conditions
After finishing the starting control (930 seconds), (all) the electronic expansion valve(s) for the room(s) in operation is/are controlled.

Determine Electronic Expansion Valve Opening
The electronic expansion valve opening is adjusted so that the temperature difference between the maximum heat exchanger temperature of connected room and the liquid pipe temperature thermistor becomes constant.
4.13.11 Target Discharge Pipe Temperature Control

The target discharge pipe temperature is obtained from the indoor and outdoor heat exchanger temperature, and the electronic expansion valve opening is adjusted so that the actual discharge pipe temperature becomes close to the target discharge pipe temperature. (Indirect SH (superheating) control using the discharge pipe temperature)

The electronic expansion valve opening and the target discharge pipe temperature are adjusted every 15 seconds. The target discharge pipe temperature is controlled by indoor heat exchanger temperature and outdoor heat exchanger temperature. The opening degree of the electronic expansion valve is adjusted by the following.

- Target discharge pipe temperature
- Actual discharge pipe temperature
- Previous discharge pipe temperature
4.14 Malfunctions

4.14.1 Sensor Malfunction Detection

Relating to Thermistor Malfunction
1. Outdoor heat exchanger thermistor
2. Discharge pipe thermistor
3. Radiation fin thermistor
4. Gas pipe thermistor
5. Outdoor temperature thermistor
6. Liquid pipe thermistor

4.14.2 Detection of Overcurrent and Overload

Outline
In order to protect the inverter, an excessive output current is detected and the OL temperature is observed to protect the compressor.

Details
- If the inverter current exceeds 27.5 ~ 29 A (depending on the model), the system shuts down the compressor.
- If the OL (on the side of the compressor body) temperature exceeds 125°C (257°F), the compressor stops.

4.14.3 Refrigerant Shortage Control

Outline
If the power consumption is below the specified value and the frequency is higher than the specified frequency, it is regarded as refrigerant shortage. The power consumption is low comparing with that in the normal operation when refrigerant is insufficient, and refrigerant shortage is detected by checking power consumption.

![Power consumption graph]

Refer to Refrigerant shortage on page 195 for details.

4.14.4 Anti-icing Function

During cooling, if the indoor heat exchanger temperature in the room not in operation becomes below the specified temperature for the specified time, the electronic expansion valve is opened in the operation stopped room as specified, and the fully closed operation is carried out. After this, if freezing abnormality occurs longer than specified time, the system shuts down as the system abnormality.
Part 5
Remote Controller

1. Applicable Remote Controller ... 123
2. ARC466A36 .. 124
3. ARC452A21 .. 126
4. ARC452A23 .. 128
5. ARC466A21 .. 130
6. BRC944B2 Wired Remote Controller .. 132
7. BRC1E73 Wired Remote Controller ... 133
8. BRC082A43 Wireless Remote Controller ... 139
1. Applicable Remote Controller

<table>
<thead>
<tr>
<th>Indoor Unit Type</th>
<th>Model Name</th>
<th>Wireless R/C</th>
<th>Reference Page</th>
<th>Wired R/C</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>RA</td>
<td>FTXR09TVJUW(S)</td>
<td>ARC466A36</td>
<td>124</td>
<td>BRC944B2</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>FTXR12TVJUW(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTXR18TVJUW(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTXG09QVJUW(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTXG12QVJUW(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTXG18QVJUW(S)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CTXS07LVJU</td>
<td>ARC452A21</td>
<td>126</td>
<td>BRC944B2</td>
<td>132</td>
</tr>
<tr>
<td></td>
<td>FTXS09LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTXS12LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTXS15LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTXS18LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FTXS24LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDXS09LVJU</td>
<td>ARC452A23</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDXS12LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDXS15LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDXS18LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CDXS24LVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FVXS09NVJU</td>
<td>ARC466A21</td>
<td>130</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>FVXS12NVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FVXS15NVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FVXS18NVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SA</td>
<td>FDMQ09RVJU</td>
<td>BRC082A43</td>
<td>139</td>
<td>BRC1E73</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>FDMQ12RVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDMQ15RVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDMQ18RVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FDMQ24RVJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FFOQ09Q2VJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FFOQ12Q2VJU</td>
<td>BRC082A41W</td>
<td>141</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FFOQ15Q2VJU</td>
<td>BRC082A42W(S)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FFOQ18Q2VJU</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: Refer to the operation manual of applicable model for details. You can download operation manuals from Daikin Business Portal: Daikin Business Portal → Document Search → Item Category → Installation/Operation Manual (URL: https://global1d.daikin.com/business_portal/login/)
2. ARC466A36

Signal transmitter

- To use the remote controller, aim the transmitter at the indoor unit. If there is anything to block signals between the unit and the remote controller, such as a curtain, the unit will not operate.
- The maximum distance for communication is about 19-11/16 ft (6 m).

Make sure that there are no obstacles within 19-11/16 inch (50 cm) under the signal receiver.

Such obstacles, if any, may have an adverse influence on the reception performance of the receiver and the reception distance may be shortened.

Display (LCD)
- Displays the current settings.
 (In this illustration, each section is shown with all its displays on for the purpose of explanation.)

Temperature adjustment buttons
- Changes the temperature setting.

On/Off button
- Press this button once to start operation.
- Press once again to stop it.

Fan setting button
- Selects the airflow rate setting.

- In indoor unit quiet operation, operation sound becomes weak.
 (The airflow rate also decreases.)
- In DRY operation, the airflow rate setting is not available.

Reference
Refer to the following pages for details.

★1 POWERFUL Operation P.73
Mode button
- Selects the operation mode.

Lamp brightness setting button
- Each time you press Brightness button, the brightness of the indoor unit display changes to high, low, or off.

Comfort/Sensor button
- Every time you press Comfort/Sensor button, the setting changes in the following order:
 - COMFORT AIRFLOW
 - INTELLIGENT EYE
 - Blank
 - No setting
 - Combination

Off Timer button
- Press this button and adjust the day and time with Select button.
- Press this button again to complete TIMER setting.

Timer Cancel button
- Cancels the timer setting.
- It cannot be used for the WEEKLY TIMER operation.

Select button
- Changes the ON/OFF TIMER and WEEKLY TIMER settings.

Econo / Quiet button
- Every time you press Econo/Quiet button, the setting changes in the following order:
 - ECONO
 - OUTDOOR UNIT QUIT
 - Blank
 - No setting
 - Combination
- OUTDOOR UNIT QUIT operation is not available in FAN and DRY operation.
- OUTDOOR UNIT QUIT operation and ECONO operation cannot be used at the same time with POWERFUL operation. Priority is given to the function you pressed last.

Swing buttons
- Adjusts the airflow direction.
- When you press Swing button, the flap moves up and down, or (and) the louver moves right and left. The flap (louver) stops when you press Swing button again.

Weekly button
- WEEKLY TIMER operation

Reference
Refer to the following pages for details.

-★2 COMFORT AIRFLOW operation P.61, 64
-★3 2-area INTELLIGENT EYE operation P.70
-★4 ECONO operation P.69
-★5 Auto-swing P.61
-★6 WEEKLY TIMER operation P.76
-★7 Clock setting P.75
3. ARC452A21

Signal transmitter

- To use the remote controller, aim the transmitter at the indoor unit. If there is anything to block signals between the unit and the remote controller, such as a curtain, the unit will not operate.
- Do not drop the remote controller. Do not get it wet.
- The maximum distance for communication is approximately 23 ft. (7 m).

Display (LCD)

- Displays the current settings. (In this illustration, each section is shown with all its displays on for the purpose of explanation.)

TEMPERATURE adjustment buttons

- Changes the temperature setting.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>18 ~ 30 °C (64 ~ 86 °F)</td>
</tr>
<tr>
<td>DRY</td>
<td>Not available</td>
</tr>
<tr>
<td>COOL</td>
<td>18 ~ 32 °C (64 ~ 90 °F)</td>
</tr>
<tr>
<td>HEAT</td>
<td>10 ~ 30 °C (50 ~ 86 °F)</td>
</tr>
<tr>
<td>FAN</td>
<td>Not available</td>
</tr>
</tbody>
</table>

FAN setting button

- Selects the airflow rate setting every time you press this button.
- In indoor unit quiet operation, operation sound becomes weak. (The airflow rate also decreases.)
- In DRY operation, the airflow rate setting is not available.

ON/OFF button

- Press this button once to start operation. Press once again to stop it.

POWERFUL*¹ button

- Starts POWERFUL operation.

Reference

Refer to the following pages for details.

★1 POWERFUL Operation P.73
Open the Front Cover

Mode button
- Selects the operation mode.

Quiet button
- Starts OUTDOOR UNIT QUIET operation.
- OUTDOOR UNIT QUIET operation is not available in FAN and DRY operation.
- OUTDOOR UNIT QUIET operation and POWERFUL operation cannot be used at the same time. Priority is given to the function you pressed last.

Comfort*2/Sensor*3 button
- Every time you press COMFORT/SENSOR button, the setting changes in the following order.
 - COMFORT AIRFLOW
 - INTELLIGENT EYE
 - blank
 - No Setting
 - Combination

Off timer button
- Press this button and adjust the day and time with SELECT button.
- Press this button again to complete TIMER setting.

Timer cancel button
- Cancels the timer setting.
- Cannot be used for the WEEKLY TIMER operation.

Econo*4 button
- Starts ECONO operation.

Swing*5 buttons
- Adjusts the airflow direction.
- When you press SWING button, the flap moves up and down, or (and) the louver moves right and left. The flap (louver) stops when you press SWING button again.

Weekly button (Weekly timer operation*6)
- WEEKLY: WEEKLY button
- COPY: PROGRAM button
- BACK: COPY button
- NEXT: BACK button

On timer button
- Press this button and adjust the day and time with SELECT button.
- Press this button again to complete TIMER setting.

Clock*7 button
- Changes the ON/OFF TIMER and WEEKLY TIMER settings.

Reference
Refer to the following pages for details.
★2 Comfort airflow operation P.61, 64
★3 Intelligent eye operation P.70
★4 Econo operation P.69
★5 Auto-swing P.61
★6 Weekly timer operation P.76
★7 Clock setting P.75
4. ARC452A23

Signal transmitter

- To use the remote controller, aim the transmitter at the indoor unit. If there is anything to block signals between the unit and the remote controller, such as a curtain, the unit will not operate.
- Do not drop the remote controller.
- Do not get it wet.
- The maximum distance for communication is approximately 13 ft (4 m).

Display (LCD)
- Displays the current settings. (In this illustration, each section is shown with all its displays on for the purpose of explanation.)

TEMPERATURE adjustment buttons
- Changes the temperature setting.

ON/OFF button
- Press this button once to start operation.
- Press once again to stop it.

POWERFUL*1 button
- Starts POWERFUL operation.

Reference
Refer to the following pages for details.
★1 POWERFUL Operation P.73
Open the Front Cover

MODE button
- Selects the operation mode.

QUIET button
- Starts OUTDOOR UNIT QUIET operation.
- OUTDOOR UNIT QUIET operation is not available in FAN and DRY operation.
- OUTDOOR UNIT QUIET operation and POWERFUL operation cannot be used at the same time. Priority is given to the function you pressed last.

ECONO\(^2\) button
- Starts ECONO operation.

SELECT button
- Changes the ON/OFF TIMER settings.

OFF TIMER button (NIGHT SET mode)
- Press this button and adjust the time with SELECT button. Press this button again to complete TIMER setting.

ON TIMER button
- Press this button and adjust the time with SELECT button. Press this button again to complete TIMER setting.

CLOCK\(^3\) button

TIMER CANCEL button
- Cancels the timer setting.

Reference
Refer to the following pages for details.

- \(^2\) ECONO operation P.69
- \(^3\) Clock setting P.75

(R25076)
5. ARC466A21

Signal transmitter

- To use the remote controller, aim the transmitter at the indoor unit. If there is anything blocking the signals between the unit and the remote controller, such as a curtain, the unit may not operate.
- The maximum transmission distance is about 23 ft (7 m).

Fan setting button

- Selects the airflow rate setting every time you press this button.
 - Auto
 - Indoor unit quiet
 - Low
 - Middle low
 - High
 - Middle high
 - Middle

- In indoor unit quiet operation, operation sound becomes weak.
 (The airflow rate also decreases.)
- In DRY operation, the airflow rate setting is not available.

Display (LCD)

- Displays the current settings.
 (In this illustration, each section is shown with all its displays on for the purpose of explanation.)

Temperature adjustment buttons

- Changes the temperature setting.

<table>
<thead>
<tr>
<th>Setting</th>
<th>Temperature Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>AUTO</td>
<td>18 ~ 30 °C (64 ~ 86 °F)</td>
</tr>
<tr>
<td>DRY</td>
<td>Not available</td>
</tr>
<tr>
<td>COOL</td>
<td>18 ~ 32 °C (64 ~ 90 °F)</td>
</tr>
<tr>
<td>HEAT</td>
<td>10 ~ 30 °C (50 ~ 86 °F)</td>
</tr>
<tr>
<td>FAN</td>
<td>Not available</td>
</tr>
</tbody>
</table>

On/Off button

- Press this button once to start operation.
 Press once again to stop it.

Powerful*1 button

- Starts POWERFUL operation.

Reference

Refer to the following pages for details.

★1 POWERFUL Operation P.73
Open the Front Cover

Mode button
- Selects the operation mode.

Econo\(^*2\) button
- Starts ECONO operation.

Swing\(^*3\) button
- Adjusts the airflow direction.
- When you press Swing button, the flap moves up and down. The flap stops when you press Swing button again.

Weekly button (WEEKLY TIMER Operation\(^*4\))
- : Weekly button
- : Program button
- : Copy button
- : Back button
- : Next button

Off Timer button (NIGHT SET mode)
- Press this button and adjust the day and time with Select button. Press this button again to complete TIMER setting.

Timer Cancel button
- Cancels the timer setting.
- Cannot be used for the WEEKLY TIMER operation.

Select button
- It changes the ON/OFF TIMER and WEEKLY TIMER settings.

Quiet button
- Starts OUTDOOR UNIT QUIET operation.
- OUTDOOR UNIT QUIET operation is not available in FAN and DRY operation.
- OUTDOOR UNIT QUIET operation and POWERFUL operation cannot be used at the same time. Priority is given to the function you pressed last.

Reference
Refer to the following pages for details.

- ★2 ECONO operation P.69
- ★3 Auto-swing P.61
- ★4 WEEKLY TIMER operation P.76
- ★5 Clock setting P.75
6. BRC944B2 Wired Remote Controller

This remote controller cannot be used together with a standard wireless remote controller. Otherwise, what appears on this remote controller's display may fail to correspond to actual operating conditions.
7. BRC1E73 Wired Remote Controller

1. Operation mode selector button

3. Menu/OK button

4. Up button ▲

5. Down button ▼

6. Right button ►

7. Left button ◄

8. On/Off button

9. Operation lamp

10. Cancel button

2. Fan speed control button

11. LCD (with backlight)
1. Operation mode selector button
 - Press this button to select the operation mode of your preference.
 * Available modes vary with the indoor unit model.

2. Fan speed control button
 - Press this button to select the fan speed of your preference.
 * Available fan speeds vary with the indoor unit model.

3. Menu/OK button
 - Used to enter the main menu.
 - Used to enter the selected item.

4. Up button ▲
 - Used to raise the setpoint.
 - The item above the current selection will be highlighted.
 (The highlighted items will be scrolled continuously when the button is continuously pressed.)
 - Used to change the selected item.

5. Down button ▼
 - Used to lower the setpoint.
 - The item below the current selection will be highlighted.
 (The highlighted items will be scrolled continuously when the button is continuously pressed.)
 - Used to change the selected item.

6. Right button ➤
 - Used to highlight the next items on the right-hand side.
 - Each screen is scrolled in the right-hand direction.

7. Left button ◀
 - Used to highlight the next items on the left-hand side.
 - Each screen is scrolled in the left-hand direction.

8. On/Off button
 - Press this button and system will start.
 - Press this button again to stop the system.

9. Operation lamp
 - This lamp illuminates solid green during normal operation.
 - This lamp flashes if an error occurs.

10. Cancel button
 - Used to return to the previous screen.

11. LCD (with backlight)
 - The backlight will be illuminated for approximately 30 seconds by pressing any button.
 - If two remote controllers are used to control a single indoor unit, only the controller accessed first will have backlight functionality.
Liquid Crystal Display

- Three types of display mode (Standard, Detailed and Simple) are available.
- Standard display is set by default.
- Detailed and Simple displays can be selected in the main menu.

Standard display

1. **Operation mode**
2. **Fan Speed**
3. **Setpoint**
4. **Stand by for Defrost/ Hot start**
5. **Message**
6. **Ventilation**
7. **() Key Lock**
8. **() Scheduled**
9. **Under centralized control**
10. **Changeover controlled by the master indoor unit**
11. **Setback**

Detailed display

- The airflow direction, clock, and selectable item appear on Detailed display screen in addition to the items appearing on Standard display.

12. **Airflow Direction**
 (Displayed only when the indoor unit is turned on.)

13. **Current Day/Time (12/24 hour time display)**
14. **Selectable Display Item**

- No Fan speed display
 (with no fan speed control function)
- No Airflow Direction display
 (with no airflow direction settings)
- No Clock display
 (when the clock has not been set yet)
- No Selectable Display Item
 (with no selectable display item selected)
Simple display

1. Operation mode
2. Fan speed
3. Setpoint

<Simple display example>

11. Setback
14. Selectable Display Item

Note for all display modes
- Depending on the field settings, while the indoor unit is stopped, OFF may be displayed instead of the operation mode and/or the setpoint may not be displayed.
1. Operation mode

- Used to display the current operation mode: Cool, Heat, Vent, Fan, Dry or Auto.
- In Auto mode, the actual operation mode (Cool or Heat) will be also displayed.
- Operation mode cannot be changed when OFF is displayed.
- Operation mode can be changed after starting operation.

2. Fan Speed

- Used to display the fan speed that is set for the indoor unit.
- The fan speed will not be displayed if the connected model does not have fan speed control functionality.

3. Setpoint

- Used to display the setpoint for the indoor unit.
- Use the Celsius/Fahrenheit item in the main menu to select the temperature unit (Celsius or Fahrenheit).

4. Stand by for Defrost/Hot start

If ventilation icon is displayed in this field:
- Indicates that an energy recovery ventilator (ERV) is connected.
 For details, refer to the Operation Manual of the ERV.

5. Message

The following messages may be displayed.
- “This function is not available”
 - Displayed for a few seconds when an Operation button is pressed and the indoor unit does not provide the corresponding function.
 - In a remote control group, the message will not appear if at least one of the indoor units provides the corresponding function.

- “Error: Push Menu button”
- “Warning: Push Menu button”
 - Displayed if an error or warning is detected.
- “Time to clean filter”
- “Time to clean element”
- “Time to clean filter & element”
 - Displayed as a reminder when it is time to clean the filter and/or element.

6. Ventilation

- Displayed when an energy recovery ventilator is connected.
- Ventilation Mode icon. “ERV ERV BYPASS”
 These icons indicate the current ventilation mode (ERV only) (AUTO, ERV, BYPASS).
- Air Purify ICON “AIR
 This icon indicates that the air purifying unit (Optional) is in operation.

7. Key Lock

- Displayed when the key lock is set.

8. Scheduled

- Displayed if the Schedule or Off timer is enabled.

9. Under Centralized control “RC

- Displayed if the system is under the management of a multi-zone controller (Optional) and the operation of the system through the remote controller is limited.

10. Changeover controlled by the master indoor unit “MC

- Displayed when another indoor unit on the system has the authority to change the operation mode between cool and heat.
11. Setback “SETBACK”

- The setback icon flashes when the unit is turned on by the setback control.

12. Airflow Direction “/”

- Displayed when the airflow direction and swing are set.
- If the connected indoor unit model does not include oscillating louvers this item will not be displayed.

13. Current Day/Time (12/24 hour time display)

- Displayed if the clock is set.
- If the clock is not set, “-- : --” will be displayed.
- 12 hour time format is displayed by default.
- Select 12/24 hour time display option in the main menu under “Clock & Calendar”.

14. Selectable Display Item

- Room temperature is selected by default.
- For other choices see the operation manual.

15. Unable to schedule

- Displayed when the clock needs to be set.
- The schedule function will not work unless the clock is set.
8. BRC082A43 Wireless Remote Controller

The situation which opened the front cover of the remote control

(R25006)
<table>
<thead>
<tr>
<th></th>
<th>DISPLAY “ ▲ ” “ I ” (SIGNAL TRANSMISSION)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>This lights up when a signal is being transmitted.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY “ △ ” “ △ ” “ △ ” “ △ ”</td>
</tr>
<tr>
<td>2</td>
<td>(OPERATION MODE)</td>
</tr>
<tr>
<td></td>
<td>This display shows the current OPERATION MODE.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY “ △ ” (SET TEMPERATURE)</td>
</tr>
<tr>
<td>3</td>
<td>This display shows the set temperature.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY “ ⅃ ” (PROGRAMMED TIME)</td>
</tr>
<tr>
<td>4</td>
<td>This display shows PROGRAMMED TIME of the system start or stop.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY “ △ ” “ △ ” (FAN SPEED)</td>
</tr>
<tr>
<td>5</td>
<td>This display shows the set fan speed.</td>
</tr>
<tr>
<td></td>
<td>DISPLAY “ △ ” “ △ ” “ △ ”</td>
</tr>
<tr>
<td>6</td>
<td>(INSPECTION/ TEST OPERATION)</td>
</tr>
<tr>
<td></td>
<td>When the INSPECTION/TEST OPERATION BUTTON is pressed, the display shows the system mode is in.</td>
</tr>
<tr>
<td></td>
<td>ON/OFF BUTTON</td>
</tr>
<tr>
<td>7</td>
<td>Press the button and the system will start. Press the button again and the system will stop.</td>
</tr>
<tr>
<td></td>
<td>FAN SPEED CONTROL BUTTON</td>
</tr>
<tr>
<td>8</td>
<td>Press this button to select the fan speed (HIGH, MEDIUM or LOW) of your choice.</td>
</tr>
<tr>
<td></td>
<td>TEMPERATURE SETTING BUTTON</td>
</tr>
<tr>
<td>9</td>
<td>Use this button for SETTING TEMPERATURE. (Operates with the front cover of the remote controller closed.)</td>
</tr>
<tr>
<td></td>
<td>PROGRAMMING TIMER BUTTON</td>
</tr>
<tr>
<td>10</td>
<td>Use this button for programming “START and/or STOP” time. (Operates with the front cover of the remote controller opened.)</td>
</tr>
<tr>
<td></td>
<td>TIMER MODE START/STOP BUTTON</td>
</tr>
<tr>
<td>11</td>
<td>Use this button for TIMER MODE setting.</td>
</tr>
<tr>
<td></td>
<td>TIMER RESERVE/CANCEL BUTTON</td>
</tr>
<tr>
<td>12</td>
<td>Use this button to end timer setting procedure.</td>
</tr>
<tr>
<td></td>
<td>OPERATION MODE SELECTOR BUTTON</td>
</tr>
<tr>
<td>13</td>
<td>Press this button to select OPERATION MODE.</td>
</tr>
<tr>
<td></td>
<td>FILTER SIGN RESET BUTTON</td>
</tr>
<tr>
<td>14</td>
<td>Refer to the section of MAINTENANCE in the operation manual attached to the indoor unit.</td>
</tr>
<tr>
<td></td>
<td>INSPECTION/TEST OPERATION BUTTON</td>
</tr>
<tr>
<td>15</td>
<td>This button is pressed for inspection or test operation. Do not use for normal operation.</td>
</tr>
<tr>
<td></td>
<td>EMERGENCY OPERATION SWITCH</td>
</tr>
<tr>
<td>16</td>
<td>This switch is readily used if the remote controller does not work.</td>
</tr>
<tr>
<td></td>
<td>RECEIVER</td>
</tr>
<tr>
<td>17</td>
<td>This receives the signals from the remote controller.</td>
</tr>
<tr>
<td></td>
<td>OPERATING INDICATOR LAMP (Red)</td>
</tr>
<tr>
<td>18</td>
<td>This lamp stays lit while the air conditioner runs. It flashes when the unit is in trouble.</td>
</tr>
<tr>
<td></td>
<td>TIMER INDICATOR LAMP (Green)</td>
</tr>
<tr>
<td>19</td>
<td>This lamp stays lit while the timer is set.</td>
</tr>
<tr>
<td></td>
<td>AIR FILTER CLEANING TIME INDICATOR LAMP (Red)</td>
</tr>
<tr>
<td>20</td>
<td>Lights up when it is time to clean the air filter.</td>
</tr>
<tr>
<td></td>
<td>DEFROST LAMP (Orange)</td>
</tr>
<tr>
<td>21</td>
<td>Lights up when the defrosting operation has started. (For cooling only type this lamp does not turn on.)</td>
</tr>
</tbody>
</table>
9. BRC082A41W, BRC082A42W(S) Wireless Remote Controller
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| **1** | **DISPLAY ▲ (SIGNAL TRANSMISSION)**
This lights up when a signal is being transmitted. |
| **2** | **DISPLAY ⊙, (⊙), (⊙), (⊙) (OPERATION MODE)**
This display shows the current OPERATION MODE. |
| **3** | **DISPLAY ⊙, ⊙, ⊙, ⊙ (SET TEMPERATURE)**
This display shows the set temperature. |
| **4** | **DISPLAY ⊙, ⊙, ⊙ (PROGRAMMED TIME)**
This display shows PROGRAMMED TIME of the system start or stop. |
| **5** | **DISPLAY (SWING FLAP)**
The display shows the set fan speed. |
| **6** | **DISPLAY ⊙, ⊙, ⊙ (FAN SPEED)**
The display shows the set fan speed. |
| **7** | **DISPLAY ◊/TEST (INSPECTION/TEST OPERATION)**
When the INSPECTION/TEST OPERATION button is pressed, the display shows the system mode is in. |
| **8** | **ON/OFF BUTTON**
Press the button and the system will start. Press the button again and the system will stop. |
| **9** | **FAN SPEED CONTROL BUTTON**
Press this button to select the fan speed, LOW, MEDIUM or HIGH, of your choice. |
| **10** | **TEMPERATURE SETTING BUTTON**
Use this button for setting temperature. |
| **11** | **TIMER MODE START/STOP BUTTON** |
| **12** | **TIMER RESERVE/CANCEL BUTTON** |
| **13** | **AIRFLOW DIRECTION ADJUST BUTTON** |
| **14** | **OPERATION MODE SELECTOR BUTTON**
Press this button to select OPERATION MODE. |
| **15** | **FILTER SIGN RESET BUTTON** |
| **16** | **INSPECTION/TEST OPERATION BUTTON**
This button is used only by qualified service persons for maintenance purposes. |
| **17** | **EMERGENCY OPERATION SWITCH**
This switch is readily used if the remote controller does not work. |
| **18** | **RECEIVER**
This receives the signals from the remote controller. |
| **19** | **OPERATION LAMP (Red)**
This lamp stays lit while the air conditioner runs. It blinks when the unit is in trouble. |
| **20** | **TIMER LAMP (Green)**
This lamp stays lit while the timer is set. |
| **21** | **AIR FILTER CLEANING TIME INDICATOR LAMP (Red)**
Lights up when it is time to clean the air filter. |
| **22** | **DEFROST LAMP (Orange)**
Lights up when the defrosting operation has started. |

DISPLAY

- **▲** Signal Transmission
- **⊙** Operation Mode
- **◊** Set Temperature
- **◊/TEST** Inspection/Test Operation
- **△** Swing Flap
- **△△△** Fan Speed
- **△△△** Programmed Time
- **△△△** Function

Buttons

- **ON/OFF**
- **FAN SPEED CONTROL**
- **TEMPERATURE SETTING**
- **TIMER MODE START/STOP**
- **FILTER SIGN RESET**
- **INSPECTION/TEST**
- **EMERGENCY OPERATION**
- **RECEIVER**
- **OPERATION LAMP**
- **TIMER LAMP**
- **AIR FILTER CLEANING TIME INDICATOR**
- **DEFROST LAMP**
1. General Problem Symptoms and Check Items ... 145
2. Troubleshooting with LED ... 146
 2.1 Indoor Unit ... 146
 2.2 Outdoor Unit .. 149
3. Service Diagnosis ... 150
 3.1 ARC452 Series Wireless Remote Controller .. 150
 3.2 ARC466 Series Wireless Remote Controller .. 153
 3.3 BRC1E73 Wired Remote Controller .. 156
 3.4 BRC082A43, BRC082A41W, BRC082A42W(S) Wireless Remote Controller
 ... 158
4. Code Indication on Remote Controller ... 162
 4.1 RA Indoor Unit .. 162
 4.2 SA Indoor Unit .. 162
 4.3 Outdoor Unit .. 163
5. Troubleshooting for RA Indoor Unit .. 164
 5.1 Indoor Unit PCB Abnormality .. 164
 5.2 Freeze-up Protection Control/Heating Peak-cut Control 166
 5.3 Indoor Fan Motor or Related Abnormality .. 167
 5.4 Thermistor or Related Abnormality ... 172
 5.5 Front Panel Open/Close Fault .. 173
 5.6 Signal Transmission Error (Between Indoor Unit and Outdoor Unit)....... 174
 5.7 Mismatching of Indoor Unit and Outdoor Unit .. 177
6. Troubleshooting for SA Indoor Unit ... 178
 6.1 Indoor Unit PCB Abnormality .. 178
 6.2 Drain Level Control System Abnormality .. 179
 6.3 Indoor Fan Motor or Related Abnormality .. 180
 6.4 Indoor Fan PCB Abnormality .. 185
 6.5 Humidifier or Related Abnormality ... 186
 6.6 Thermistor or Related Abnormality ... 187
 6.7 Presence Sensor or Floor Sensor Abnormality 188
 6.8 Remote Controller Thermistor Abnormality ... 189
 6.9 Signal Transmission Error (Between Indoor and Outdoor Unit) 190
 6.10 Signal Transmission Error (Between Indoor Unit and Remote Controller)
 ... 192
 6.11 Signal Transmission Error (Between MAIN/SUB Remote Controllers) 193
 6.12 Mismatching of Indoor Unit and Outdoor Unit 194
7. Troubleshooting for Outdoor Unit ... 195
 7.1 Refrigerant Shortage ... 195
 7.2 Low-voltage Detection or Over-voltage Detection 198
7.3 Wiring Error Check Unexecuted ... 200
7.4 Unspecified Voltage (Between Indoor Unit and Outdoor Unit), Anti-icing Control in Other Rooms ... 201
7.5 Anti-icing Control for Indoor Unit .. 202
7.6 Outdoor Unit PCB Abnormality ... 204
7.7 OL Activation (Compressor Overload) .. 205
7.8 Compressor Lock .. 208
7.9 DC Fan Lock .. 210
7.10 Input Overcurrent Detection .. 212
7.11 Four Way Valve Abnormality ... 214
7.12 Discharge Pipe Temperature Control ... 216
7.13 High Pressure Control in Cooling .. 217
7.14 Compressor Sensor System Abnormality .. 219
7.15 Position Sensor Abnormality ... 221
7.16 Thermistor or Related Abnormality (Outdoor Unit) 224
7.17 Electrical Box Temperature Rise .. 226
7.18 Radiation Fin Temperature Rise .. 227
7.19 Output Overcurrent Detection .. 229

8. Check ... 232
8.1 Thermistor Resistance Check ... 232
8.2 Indoor Fan Motor Connector Check ... 233
8.3 Hall IC Check ... 234
8.4 Power Supply Waveform Check ... 235
8.5 Electronic Expansion Valve Check .. 236
8.6 Four Way Valve Performance Check .. 237
8.7 Inverter Unit Refrigerant System Check .. 237
8.8 Inverter Analyzer Check .. 238
8.9 Rotation Pulse Check on the Outdoor Unit PCB 240
8.10 Installation Condition Check ... 240
8.11 Discharge Pressure Check ... 241
8.12 Outdoor Fan System Check .. 241
8.13 Main Circuit Short Check .. 242
8.14 Capacitor Voltage Check .. 244
8.15 Power Module Check .. 245
1. General Problem Symptoms and Check Items

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Check Item</th>
<th>Details</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>None of the units operates.</td>
<td>Check the power supply.</td>
<td>Check if the rated voltage is supplied.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the types of the indoor units.</td>
<td>Check if the indoor unit type is compatible with the outdoor unit.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the outdoor temperature.</td>
<td>Heating/cooling operations are not available when the outdoor temperature is out of the operation limit. Check the reference page for the operation limit.</td>
<td>292</td>
</tr>
<tr>
<td>Diagnose with remote controller indication</td>
<td></td>
<td></td>
<td>162, 163</td>
</tr>
<tr>
<td>For RA Indoor Unit:</td>
<td>Check the wireless remote controller addresses.</td>
<td>Check if address settings for the wireless remote controller and indoor unit are correct.</td>
<td>258</td>
</tr>
<tr>
<td>For SA Indoor Unit:</td>
<td>Check the wireless remote controller addresses.</td>
<td>Check if address settings for the wireless remote controller and indoor unit are correct.</td>
<td>192, 193</td>
</tr>
<tr>
<td></td>
<td>If using 2 remote controllers for 1 indoor unit, check MAIN/SUB setting.</td>
<td>Check if the MAIN/SUB setting is correct.</td>
<td></td>
</tr>
<tr>
<td>Operation sometimes stops.</td>
<td>Check the power supply.</td>
<td>A power failure of 2 to 10 cycles can stop air conditioner operation. (Operation lamp OFF)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the outdoor temperature.</td>
<td>Heating/cooling operations are not available when the outdoor temperature is out of the operation limit. Check the reference page for the operation limit.</td>
<td>292</td>
</tr>
<tr>
<td>Diagnose with remote controller indication</td>
<td></td>
<td></td>
<td>162, 163</td>
</tr>
<tr>
<td>Some indoor units do not operate.</td>
<td>Check the type of the indoor units.</td>
<td>Check if the indoor unit type is compatible with the outdoor unit.</td>
<td>—</td>
</tr>
<tr>
<td>Diagnose with remote controller indication</td>
<td></td>
<td></td>
<td>162, 163</td>
</tr>
<tr>
<td>Units operate but do not cool, or do not heat.</td>
<td>Check for wiring and piping errors in the connection between the indoor and outdoor units.</td>
<td>Check the piping. Conduct the wiring error check described on the product diagnosis nameplate.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check for thermistor detection errors.</td>
<td>Check if the thermistor is mounted securely.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check for faulty operation of the electronic expansion valve.</td>
<td>Set all the units to cooling operation, and compare the temperatures of the liquid pipes to see if the each electronic expansion valve works.</td>
<td>—</td>
</tr>
<tr>
<td>Diagnose with remote controller indication</td>
<td></td>
<td></td>
<td>162, 163</td>
</tr>
<tr>
<td>Diagnose by service port pressure and operating current.</td>
<td>Check for refrigerant shortage.</td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>Large operating noise and vibrations</td>
<td>Check the output voltage of the power module.</td>
<td></td>
<td>245</td>
</tr>
<tr>
<td></td>
<td>Check the power module.</td>
<td></td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the installation condition.</td>
<td>Check if the required spaces for installation (specified in the installation manual) are provided.</td>
<td>—</td>
</tr>
</tbody>
</table>
2. Troubleshooting with LED

2.1 Indoor Unit

Operation Lamp

The operation lamp blinks when any of the following errors is detected.

- A protection device of the indoor or outdoor unit is activated, or when the thermistor malfunctions.
- A signal transmission error occurs between the indoor and outdoor units.

In either case, conduct the diagnostic procedure described in the following pages.

FTXR/CTXG Series

CTXS/FTXS Series

FDXS/CDXS Series
FVXS Series

FDMQ, FFQ series with BRC1E73 wired remote controller

In case of wireless remote controller, a receiver is installed. When the error occurs, the operation lamp on the receiver blinks.

FFQ series with BRC082A41W, BRC082A42W(S) wireless remote controller

In case of wireless remote controller, a transmitter board (A2P) and a receiver (A3P) are installed on indoor unit. When the error occurs, the operation lamp on the receiver (A3P) blinks.
When operation stops suddenly and the operation lamp blinks, it could be operation mode conflict. For FFQ models, even if the operation mode conflict occurs, the operation lamp does not blink.

1. Check if the operation modes are all the same for the indoor units connected to multi system outdoor unit.
2. If not, set all the indoor units to the same operation mode and confirm that the operation lamp is not blinking.
3. Moreover, when the operation mode is automatic, set all the indoor unit operation mode as cooling or heating and check again if the operation lamp is normal. If the lamp stops blinking after the above steps, there is no malfunction.

*Operation stops and operation lamp blinks only for the indoor unit that has a different operation mode set later. The first set operation mode has priority.

Service Monitor

The indoor unit has a green LED (LED A, HAP) on the control PCB. When the microcomputer works in order, the LED blinks. (Refer to page 37 for the location of LED.)
2.2 Outdoor Unit

The outdoor unit has a green LED (LED A) and red LEDs (LED 1 ~ LED 5) on the PCB. When the microcomputer works in order, the LED A blinks, and when the system is in normal condition, the red LEDs are OFF. Even after the error is canceled and the unit operates in normal condition, the LED indication remains.

Refer to page 54 for the location of LED.
3. Service Diagnosis

3.1 ARC452 Series Wireless Remote Controller

3.1.1 Method 1

1. When TIMER CANCEL button is held down for 5 seconds, 00 is displayed on the temperature display screen.
2. Press TIMER CANCEL button repeatedly until a long beep sounds.

- The code indication changes in the sequence shown below.

ARC452A21, A23

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>13</td>
<td>C7</td>
<td>25</td>
<td>U8</td>
</tr>
<tr>
<td>2</td>
<td>U4</td>
<td>14</td>
<td>A3</td>
<td>26</td>
<td>UH</td>
</tr>
<tr>
<td>3</td>
<td>L5</td>
<td>15</td>
<td>H8</td>
<td>27</td>
<td>P4</td>
</tr>
<tr>
<td>4</td>
<td>E6</td>
<td>16</td>
<td>H9</td>
<td>28</td>
<td>L3</td>
</tr>
<tr>
<td>5</td>
<td>H6</td>
<td>17</td>
<td>C9</td>
<td>29</td>
<td>L4</td>
</tr>
<tr>
<td>6</td>
<td>H0</td>
<td>18</td>
<td>C4</td>
<td>30</td>
<td>R9</td>
</tr>
<tr>
<td>7</td>
<td>A6</td>
<td>19</td>
<td>C5</td>
<td>31</td>
<td>U2</td>
</tr>
<tr>
<td>8</td>
<td>E7</td>
<td>20</td>
<td>J3</td>
<td>32</td>
<td>ER</td>
</tr>
<tr>
<td>9</td>
<td>U0</td>
<td>21</td>
<td>J6</td>
<td>33</td>
<td>RH</td>
</tr>
<tr>
<td>10</td>
<td>F3</td>
<td>22</td>
<td>E5</td>
<td>34</td>
<td>FA</td>
</tr>
<tr>
<td>11</td>
<td>F6</td>
<td>23</td>
<td>R1</td>
<td>35</td>
<td>R1</td>
</tr>
<tr>
<td>12</td>
<td>F8</td>
<td>24</td>
<td>E1</td>
<td>36</td>
<td>P9</td>
</tr>
</tbody>
</table>

Notes

1. A short beep or two consecutive beeps indicate non-corresponding codes.
2. To return to the normal mode, hold TIMER CANCEL button down for 5 seconds. When the remote controller is left untouched for 60 seconds, it also returns to the normal mode.
3. Not all the error codes are displayed. When you cannot find the error code, try method 2. Refer to page 151.
3.1.2 Method 2

1. Press the 3 buttons (TEMP▲, TEMP▼, MODE) at the same time to enter the diagnosis mode.

 The left-side number blinks.

2. Press TEMP▲ or TEMP▼ button and change the number until you hear the two consecutive beeps or the long beep.

3. Diagnose by the sound.
 - Beep: The left-side number does not correspond with the error code.
 - Two consecutive beeps: The left-side number corresponds with the error code but the right-side number does not.
 - Long beep: Both the left-side and right-side number correspond with the error code.
 The numbers indicated when you hear the long beep are the error code. Refer to page 162, 163.

4. Press MODE button.

 The right-side number blinks.
5. Press **TEMP**↑ or **TEMP**↓ button and change the number until you hear the long beep.

6. Diagnose by the sound.
 - Beep: The left-side number does not correspond with the error code.
 - Two consecutive beeps: The left-side number corresponds with the error code but the right-side number does not.
 - Long beep: Both the left-side and right-side number corresponds with the error code.

7. Determine the error code.
 The numbers indicated when you hear the long beep are the error code.
 Refer to page 162, 163.

8. Press **MODE** button to exit from the diagnosis mode.

 The display ‘?’ means the trial operation mode.
 Refer to page 251 for trial operation.

9. Press **ON/OFF** button twice to return to the normal mode.

Note(s) When the remote controller is left untouched for 60 seconds, it returns to the normal mode.
3.2 ARC466 Series Wireless Remote Controller

3.2.1 Method 1

1. When Timer Cancel button is held down for 5 seconds, 00 is displayed on the temperature display screen.
2. Press Timer Cancel button repeatedly until a long beep sounds.

The code indication changes in the sequence shown below.

<table>
<thead>
<tr>
<th>No.</th>
<th>Code</th>
<th>No.</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00</td>
<td>11</td>
<td>05</td>
</tr>
<tr>
<td>2</td>
<td>05</td>
<td>12</td>
<td>00</td>
</tr>
<tr>
<td>3</td>
<td>07</td>
<td>13</td>
<td>06</td>
</tr>
<tr>
<td>4</td>
<td>03</td>
<td>14</td>
<td>00</td>
</tr>
<tr>
<td>5</td>
<td>08</td>
<td>15</td>
<td>07</td>
</tr>
<tr>
<td>6</td>
<td>03</td>
<td>16</td>
<td>06</td>
</tr>
<tr>
<td>7</td>
<td>04</td>
<td>17</td>
<td>08</td>
</tr>
<tr>
<td>8</td>
<td>05</td>
<td>18</td>
<td>03</td>
</tr>
<tr>
<td>9</td>
<td>04</td>
<td>19</td>
<td>05</td>
</tr>
<tr>
<td>10</td>
<td>06</td>
<td>20</td>
<td>04</td>
</tr>
</tbody>
</table>

Notes

1. A short beep or two consecutive beeps indicate non-corresponding codes.
2. To return to the normal mode, hold Timer Cancel button down for 5 seconds. When the remote controller is left untouched for 60 seconds, it also returns to the normal mode.
3. Not all the error codes are displayed. When you cannot find the error code, try method 2. Refer to page 154.
3.2.2 Method 2

1. Press the center of Temp button and Mode button at the same time.

5°C is displayed on the LCD.

2. Select 5°C (service check) with Temp ▲ or Temp ▼ button.
3. Press Mode button to enter the service check mode.

The left-side number blinks.

4. Press Temp ▲ or Temp ▼ button and change the number until you hear the two consecutive beeps or the long beep.

5. Diagnose by the sound.
 - Beep: The left-side number does not correspond with the error code.
 - Two consecutive beeps: The left-side number corresponds with the error code but the right-side number does not.
• Long beep: Both the left-side and right-side numbers correspond with the error code.
The numbers indicated when you hear the long beep are the error code.
Refer to page 162, 163.

6. Press **Mode** button.

![Image of mode button](R24047)
The right-side number blinks.

7. Press **Temp ▲** or **Temp ▼** button and change the number until you hear the long beep.

![Image of remote controller](R11673)

8. Diagnose by the sound.
 • Beep: The left-side number does not correspond with the error code.
 • Two consecutive beeps: The left-side number corresponds with the error code but the right-side number does not.
 • Long beep: Both the left-side and right-side numbers correspond with the error code.

9. Determine the error code.
The numbers indicated when you hear the long beep are the error code.
Refer to page 162, 163.

10. Press **Mode** button for 5 seconds to exit from the service check mode.
When the remote controller is left untouched for 60 seconds, it returns to the normal mode also.

![Image of mode button](R24048)
3.3 **BRC1E73 Wired Remote Controller**

Relations Between Modes

On power-up, the message “**Checking the connection. Please standby.**” will be displayed on the remote controller screen temporarily and then the basic screen will be displayed. To access a mode from the basic screen, refer to the figure below.

When any of the operation buttons is pressed, the backlight will come on and remain lit for about 30 seconds. Be sure to press a button while the backlight is on.

![Diagram of BRC1E73 Wired Remote Controller](image)

- **Main Menu**
 - Reset Filter Indicator
 - Airflow Direction
 - Individual Airflow Direction
 - Ventilation
 - Schedule
 - Off Timer
 - Celsius / Fahrenheit
 - Filter Auto Clean
 - Maintenance Information
 - Configuration
 - Current Settings
 - Clock & Calendar
 - Daylight Saving Time
 - Language

- **Main Menu screen**
 - Press Menu/OK button once.
 - Press Cancel button once.

- **Basic Screen**
 - Operation mode changeover
 - Fan speed control
 - Menu display
 - Confirmation of each setting
 - On
 - Off
 - Cancel
 - Operation lamp

- **Basic screen**
 - Press Cancel button once.
 - Press Cancel button for 4 seconds or more.

- **Service Settings screen**
 - Test Operation
 - Maintenance Contact
 - Field Settings
 - Energy Saving Options
 - Prohibit Function
 - Min Setpoints Differential
 - Group Address
 - Indoor unit AirNet Address
 - Outdoor unit AirNet Address
 - Error History
 - Indoor Unit Status
 - Outdoor Unit Status
 - Forced Fan ON
 - Switch Main Sub Controller
 - Filter Indicator
 - Test Filter Auto Clean
 - Brush / Filter Ind.
 - Disable Filter Auto Clean

- **Maintenance Menu**
 - Model Name
 - Operation Hours
 - Indoor Unit Status
 - Outdoor Unit Status
 - Forced Defrost
 - Error Display

- **Maintenance Menu screen**
 - Press Cancel button once.
 - Press Cancel button for 4 seconds or more.

* The items shown on the remote controller are different depending on the connected indoor unit.

(R24620)
Service Diagnosis

The following message is displayed on the screen when an error (or a warning) occurs during operation. Check the error code and take the corrective action specified for the particular model.

Operation

1. If an error occurs, either one of the following items will flash in the basic screen.

 Error: Push Menu button
 * The Operation lamp will flash.
 * For Simple display, the message is not displayed, and only the Operation lamp flashes.

 Warning: Push Menu button
 * The Operation lamp will not flash.
 * For Simple display, the message is not displayed, and the Operation lamp does not flash, either.

 - Press **Menu/OK** button.

2. The error code will flash and the service contact and model name or code may be displayed.

 - Notify your Daikin dealer of the Error code and model name or code.
3.4 BRC082A43, BRC082A41W, BRC082A42W(S) Wireless Remote Controller

Relations Between Modes
The following modes can be selected by using **INSPECTION/TEST OPERATION** button on the remote controller.

Field setting mode
- Press **INSPECTION/TEST OPERATION** button once.
- Press **INSPECTION/TEST OPERATION** button for more than 4 seconds.
- Indoor unit settings can be made.
 - Filter cleaning sign time
 - Others

Normal mode
- Press **INSPECTION/TEST OPERATION** button once.
- Press **INSPECTION/TEST OPERATION** button for more than 4 seconds.
- Service data can be obtained.
 - Error code history
 - Temperature data of various sections

Service mode
- After 10 seconds without starting test operation or press **INSPECTION/TEST OPERATION** button once or 30 min. after the test operation start.
- Service settings can be made.
 - Forced fan ON
 - Airflow rate setting

Inspection mode
- Press **INSPECTION/TEST OPERATION** button once.
- After 60 seconds
- Following codes can be checked.
 - Error codes
 - Indoor model code

Test operation mode
- Press **INSPECTION/TEST OPERATION** button once.
- Test operation will stop automatically after 15–30 minutes.

Service Diagnosis
To find the error code, proceed as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press INSPECTION/TEST OPERATION button to enter the inspection mode. Then the figure 0 blinks on the UNIT No. display.</td>
</tr>
</tbody>
</table>

(R24049)
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Press UP or DOWN button and change the UNIT No. until the indoor unit starts to beep.</td>
</tr>
</tbody>
</table>

![Remote Control Diagram](image1)

<table>
<thead>
<tr>
<th>If you hear...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 short beeps</td>
<td>Follow all steps below.</td>
</tr>
<tr>
<td>1 short beep</td>
<td>Follow steps 3 and 4. Continue the operation in step 4 until you hear a long beep. This long beep indicates that the error code is confirmed.</td>
</tr>
<tr>
<td>1 long beep</td>
<td>There is no abnormality.</td>
</tr>
</tbody>
</table>

3 Press **OPERATION MODE SELECTOR** button. The left 0 (upper digit) indication of the error code blinks.

![Remote Control Diagram](image2)
<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Press UP or DOWN button to change the error code upper digit until the indoor unit beeps.</td>
</tr>
</tbody>
</table>

If you hear... | Then... |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 short beeps</td>
<td>The upper digit matches.</td>
</tr>
<tr>
<td>1 short beep</td>
<td>No digits match.</td>
</tr>
<tr>
<td>1 long beep</td>
<td>Both upper and lower digits match.</td>
</tr>
</tbody>
</table>

| 5 | Press **OPERATION MODE SELECTOR** button. The right 3 (lower digit) indication of the error code blinks. |

(R15411)
Step 6
Press **UP** or **DOWN** button and change the error code lower digit until the indoor unit generates long beep.

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Press UP or DOWN button and change the error code lower digit until the indoor unit generates long beep.</td>
</tr>
</tbody>
</table>

If you hear... Then...

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 short beeps</td>
<td>No digits match.</td>
</tr>
<tr>
<td>1 long beep</td>
<td>Both upper and lower digits match.</td>
</tr>
</tbody>
</table>

Step 7
Press **OPERATION MODE SELECTOR** button to return to the normal mode. If you do not press any button for 1 minute, the remote controller automatically returns to the normal mode.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Press OPERATION MODE SELECTOR button to return to the normal mode. If you do not press any button for 1 minute, the remote controller automatically returns to the normal mode.</td>
</tr>
</tbody>
</table>
4. Code Indication on Remote Controller

4.1 RA Indoor Unit

<table>
<thead>
<tr>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Normal condition</td>
<td>—</td>
</tr>
<tr>
<td>A1</td>
<td>Indoor unit PCB abnormality</td>
<td>164</td>
</tr>
<tr>
<td>A5</td>
<td>Freeze-up protection control/heating peak-cut control</td>
<td>166</td>
</tr>
<tr>
<td>A6</td>
<td>Indoor fan motor or related abnormality DC motor (FTXR, CTXG, CTXS, FTXS series)</td>
<td>167</td>
</tr>
<tr>
<td>C4</td>
<td>Indoor heat exchanger thermistor or related abnormality</td>
<td>172</td>
</tr>
<tr>
<td>C7</td>
<td>Front panel open/close fault (FTXR, CTXG series)</td>
<td>173</td>
</tr>
<tr>
<td>C9</td>
<td>Room temperature thermistor or related abnormality</td>
<td>172</td>
</tr>
<tr>
<td>U4</td>
<td>Signal transmission error (between indoor unit and outdoor unit)</td>
<td>174</td>
</tr>
<tr>
<td>UA</td>
<td>Mismatching of indoor unit and outdoor unit</td>
<td>177</td>
</tr>
</tbody>
</table>

4.2 SA Indoor Unit

<table>
<thead>
<tr>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Normal condition</td>
<td>—</td>
</tr>
<tr>
<td>A1</td>
<td>Indoor unit PCB abnormality</td>
<td>178</td>
</tr>
<tr>
<td>A3</td>
<td>Drain level control system abnormality</td>
<td>179</td>
</tr>
<tr>
<td>A6</td>
<td>Indoor fan motor (DC motor) or related abnormality (See the Note below)</td>
<td>180, 182</td>
</tr>
<tr>
<td>A8</td>
<td>Indoor fan PCB abnormality</td>
<td>185</td>
</tr>
<tr>
<td>AF</td>
<td>Humidifier or related abnormality</td>
<td>186</td>
</tr>
<tr>
<td>C4</td>
<td>Indoor heat exchanger thermistor 1 or related abnormality</td>
<td>187</td>
</tr>
<tr>
<td>C5</td>
<td>Indoor heat exchanger thermistor 2 or related abnormality</td>
<td>187</td>
</tr>
<tr>
<td>C9</td>
<td>Room temperature thermistor or related abnormality</td>
<td>187</td>
</tr>
<tr>
<td>CE</td>
<td>Presence sensor or floor sensor abnormality</td>
<td>188</td>
</tr>
<tr>
<td>CJ</td>
<td>Remote controller thermistor abnormality</td>
<td>189</td>
</tr>
<tr>
<td>U4</td>
<td>Signal transmission error (between indoor unit and outdoor unit)</td>
<td>190</td>
</tr>
<tr>
<td>U5</td>
<td>Signal transmission error (between indoor unit and remote controller)</td>
<td>192</td>
</tr>
<tr>
<td>U8</td>
<td>Signal transmission error (between MAIN remote controller and SUB remote controller)</td>
<td>193</td>
</tr>
<tr>
<td>UA</td>
<td>Mismatching of indoor unit and outdoor unit</td>
<td>194</td>
</tr>
</tbody>
</table>

Note

When there is a possibility of open phase power supply, also check power supply.
4.3 Outdoor Unit

\(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}}:\text{ ON, } \textbf{\textcircled{\textcolor{blue}{\textbf{H}}}}:\text{ OFF, } \textbf{\textcircled{\textcolor{green}{\textbf{J}}}}:\text{ Blinks}\)

<table>
<thead>
<tr>
<th>Outdoor Unit LED Indication</th>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 1 2 3 4 5</td>
<td>(00)</td>
<td>Normal condition</td>
<td>—</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>UA</td>
<td>Unspecified voltage (between indoor unit and outdoor unit)</td>
<td>201</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>UH</td>
<td>Anti-icing control in other rooms</td>
<td>201</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>(U0)</td>
<td>Refrigerant shortage</td>
<td>195</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>U2</td>
<td>Low-voltage detection or over-voltage detection</td>
<td>198</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>U3</td>
<td>Wiring error check unexecuted</td>
<td>200</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>A5</td>
<td>Anti-icing control for indoor unit</td>
<td>202</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>E1</td>
<td>Outdoor unit PCB abnormality</td>
<td>204</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>(E5)</td>
<td>OL activation (compressor overload)</td>
<td>205</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>(E6)</td>
<td>Compressor lock</td>
<td>208</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>E7</td>
<td>DC fan lock</td>
<td>210</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>E8</td>
<td>Input overcurrent detection</td>
<td>212</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>EA</td>
<td>Four way valve abnormality</td>
<td>214</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>F3</td>
<td>Discharge pipe temperature control</td>
<td>216</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>F6</td>
<td>High pressure control in cooling</td>
<td>217</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>H0</td>
<td>Compressor sensor system abnormality</td>
<td>219</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>H6</td>
<td>Position sensor abnormality</td>
<td>221</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>H9</td>
<td>Outdoor temperature thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>(J3)</td>
<td>Discharge pipe thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>J6</td>
<td>Outdoor heat exchanger thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>J8</td>
<td>Liquid pipe thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>J9</td>
<td>Gas pipe thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>P4</td>
<td>Radiation fin thermistor or related abnormality</td>
<td>224</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>L3</td>
<td>Electrical box temperature rise</td>
<td>226</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>L4</td>
<td>Radiation fin temperature rise</td>
<td>227</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{red}{\textbf{O}}}})</td>
<td>L5</td>
<td>Output overcurrent detection</td>
<td>229</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{blue}{\textbf{H}}}})</td>
<td>—</td>
<td>See the note 4.</td>
<td>—</td>
</tr>
<tr>
<td>(\textbf{\textcircled{\textcolor{green}{\textbf{J}}}})</td>
<td>—</td>
<td>Check the power supply.</td>
<td>—</td>
</tr>
</tbody>
</table>

Notes

1. The error codes in the parenthesis () are displayed only when the system is shut down.
2. When a sensor error occurs, check the remote controller display to determine which sensor is malfunctioning.
 If the remote controller does not indicate the error code, conduct the following procedure.
 - Turn the power off and then on again. If the same LED indication appears again immediately after the power is turned on, the fault is in the thermistor.
 - If the above condition does not result, the fault is in the CT.
3. The indoor unit error code may take the precedence in the remote controller display.
4. Turn the power off and then on again. If the same LED indication appears again, outdoor unit PCB is faulty. Replace the outdoor unit PCB.
5. Troubleshooting for RA Indoor Unit
5.1 Indoor Unit PCB Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>The system checks if the circuit works properly within the microcomputer of the indoor unit.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The system cannot set the internal settings.</td>
</tr>
</tbody>
</table>
| **Supposed Causes** | ■ Wrong models interconnected
■ Defective indoor unit PCB
■ Disconnection of connector
■ Reduction of power supply voltage |
Troubleshooting

Caution Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Combination of the indoor and outdoor unit matched? NO → Match the compatible models.
 YES → Check the connection of connectors. (Refer to Note)

Note

2. OK? YES → Check the power supply voltage.
 NO → Correct the connection.

3. Error repeats? YES → Check the power supply voltage.
 NO → Correct the power supply.

4. Voltage as rated? YES → Start operation.
 NO → Replace the indoor unit PCB (control PCB).

5. Error repeats? YES → Replace the indoor unit PCB (control PCB).
 NO → Completed.

Check the following connector.

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTXR, CTXG, CTXS, FTXS, FVXS series</td>
<td>Terminal strip ~ Control PCB (H1, H2, H3)</td>
</tr>
<tr>
<td>FDXS, CDXS series</td>
<td>Terminal block ~ Control PCB (H1, H2, H3)</td>
</tr>
</tbody>
</table>
5.2 Freeze-up Protection Control/Heating Peak-cut Control

Error Code A5

Method of Error Detection
- **Freeze-up protection control**
 During cooling operation, the freeze-up protection control (operation halt) is activated according to the temperature detected by the indoor heat exchanger thermistor.
- **Heating peak-cut control**
 During heating operation, the temperature detected by the indoor heat exchanger thermistor is used for the heating peak-cut control (operation halt, outdoor fan stop, etc.)

Error Decision Conditions
- **Freeze-up protection control**
 During cooling operation, the indoor heat exchanger temperature is below 0°C (32°F).
- **Heating peak-cut control**
 During heating operation, the indoor heat exchanger temperature is above 65°C (149°F).

Supposed Causes
- Short-circuited air
- Clogged air filter of the indoor unit
- Dust accumulation on the indoor heat exchanger
- Defective indoor heat exchanger thermistor
- Defective indoor unit PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. **Check the air passage.**
 - Is there any short circuit?
 - YES: Provide sufficient air passage.
 - NO: Check the air filter.

2. **Check the air filter.**
 - Dirty?
 - YES: Clean the air filter.
 - NO: Check the dust accumulation on the indoor heat exchanger.

3. **Check the dust accumulation on the indoor heat exchanger.**
 - Dirty?
 - YES: Clean the indoor heat exchanger.
 - NO: Check No. 01

4. **Check No. 01**
 - Check the indoor heat exchanger thermistor.
 - As described in the thermistor characteristic chart?
 - NO: Replace the indoor heat exchanger thermistor.
 - YES: Replace the indoor unit PCB (control PCB).

Reference
- Check No. 01 Refer to P.232
5.3 Indoor Fan Motor or Related Abnormality

5.3.1 Indoor Fan Motor (DC Motor) or Related Abnormality

<table>
<thead>
<tr>
<th>Applicable Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>FTXR09/12/18TVJUW(S)</td>
</tr>
<tr>
<td>CTXG09/12/18QVJUW(S)</td>
</tr>
<tr>
<td>CTXS07LVJU</td>
</tr>
<tr>
<td>FTXS09/12/15/18/24LVJU</td>
</tr>
<tr>
<td>FVXS09/12/15/18NVJU</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>A6</td>
</tr>
</tbody>
</table>

Method of Error Detection
The rotation speed detected by the Hall IC during indoor fan motor operation determines abnormal fan motor operation.

Error Decision Conditions
The detected rotation speed does not reach the demanded rotation speed of the target tap, and is less than 50% of the maximum fan motor rotation speed.

Supposed Causes
- Remarkable decrease in power supply voltage
- Layer short inside the fan motor winding
- Breaking of wire inside the fan motor
- Breaking of the fan motor lead wires
- Defective capacitor of the fan motor
- Defective indoor unit PCB
Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Troubleshooting

1. **Check the power supply voltage.**
 - **NO**
 - Correct the power supply.
 - **YES**
 - Turn off the power and rotate the fan by hand.

2. **Does the fan rotate smoothly?**
 - **NO**
 - Replace the indoor fan motor.
 - **YES**
 - **Turn on the power and start operation.**

3. **Does the fan rotate?**
 - **NO**
 - **Note:** The motor may break when the motor connector is disconnected while the power is turned on. (Be sure to turn off the power before reconnecting the connector.)
 - **YES**
 - **Check No.02** Check the output of the fan motor connector.

4. **Motor power supply voltage 310 ~ 340 VDC?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - **Motor control voltage 15 VDC generated?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - **Rotation command voltage 1 ~ 6.5 VDC?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - **Indoor fan motor rotation pulse generated?**
 - **NO**
 - Replace the indoor fan motor.
 - **YES**
 - Replace the indoor unit PCB (control PCB).

5. **Indoor fan motor rotation pulse generated?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - Replace the indoor unit PCB (control PCB).
Note The rotation pulse is the feedback signal from the indoor fan motor.

Reference
Check No.02 Refer to P. 233
5.3.2 Indoor Fan Motor (AC Motor) or Related Abnormality

Applicable Models
FDXS09/12LVJU
CDXS15/18/24LVJU

Error Code
A6

Method of Error Detection
The rotation speed detected by the Hall IC during indoor fan motor operation determines abnormal fan motor operation.

Error Decision Conditions
The detected rotation speed does not reach the demanded rotation speed of the target tap.

Supposed Causes
- Power supply voltage out of specification
- Layer short inside the fan motor winding
- Breaking of wire inside the fan motor
- Breaking of the fan motor lead wires
- Defective capacitor of the fan motor
- Defective indoor unit PCB
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the power supply voltage.

Is the voltage fluctuation within ±10% from the rated value? NO Correct the power supply.

YES

Start operation.

Does the fan rotate? NO

Turn off the power and rotate the fan by hand.

Does the fan rotate smoothly? NO

Does the fan rotate smoothly? YES

Check No. 04 Check Hall IC

Is there an output? No Replace the indoor fan motor or the indoor unit PCB (control PCB).

YES Replace the indoor fan motor.

Check the fan motor voltage.

Voltage as rated? NO Replace the indoor unit PCB (control PCB).

YES Replace the indoor fan motor.

Voltage as rated? * NO Replace the indoor unit PCB (control PCB).

YES Replace the indoor fan motor.

* Measure the voltage between the black and white lead wires of the fan motor, and check if the maximum voltage reaches the rated voltage.

Check the capacitor's continuity.

Is there continuity? NO Replace the indoor fan motor.

YES Replace the capacitor. (Replace the indoor unit PCB (control PCB).)

Reference Check No.04 Refer to P.234
5.4 Thermistor or Related Abnormality

Error Code

C4, C9

Method of Error Detection
The temperatures detected by the thermistors determine thermistor errors.

Error Decision Conditions
The voltage between the both ends of the thermistor is either 4.96 V or more, or 0.04 V or less with the power on.

Supposed Causes
- Disconnection of connector
- Defective thermistor(s)
- Defective indoor unit PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Check the connection of connectors.
 - Normal?
 - YES
 - NO Correct the connection.

2. Check No. 01 Check the thermistor resistance value.
 - Normal?
 - YES
 - NO Replace the defective thermistor(s).

 Replace the indoor unit PCB (control PCB).

C4: Indoor heat exchanger thermistor
C9: Room temperature thermistor

Reference
Check No.01 Refer to P.232

Note
When replacing the defective thermistor(s), replace the thermistor as ASSY.
5.5 Front Panel Open/Close Fault

Applicable Models
FTXR09/12/18TVJUW(S),
CTXG09/12/18QVJUW(S)

Error Code
C7

Error Decision Conditions
■ If the error repeats, the system is shut down.

Supposed Causes
■ Defective reduction motor
■ Malfunction or deterioration of the front panel mechanism
■ Defective limit switch

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Restart and check the movement.

If the front panel move?

NO

YES

Remove the front panel and check the movement.

Does the front panel mechanism move?

NO

YES

Replace the assembly of the front panel mechanism.

Replace the harness and reduction motor.

Replace the assembly of the front panel mechanism.
Check the movement of the right and left separately by hand.

Does the front panel open/close fully?

NO

YES

Restart. Does the error code reappear?

NO

YES

Replace the limit switch.

It is supposed such as deformation of the panel or stuffed dust.
Find out the cause.

Caution

Note
You cannot operate the unit by the remote controller when the front panel mechanism breaks down.

To the dealers: temporary measure before repair
1. Turn off the power.
2. Remove the front panel.
3. Turn on the power.
 (Wait until the initialization finishes.)
Operate the unit by the indoor unit ON/OFF button.
5.6 Signal Transmission Error (Between Indoor Unit and Outdoor Unit)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>The signal transmission data received from the outdoor unit is checked whether it is normal.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The data sent from the outdoor unit cannot be received normally, or the content of the data is abnormal.</td>
</tr>
<tr>
<td>Supposed Causes</td>
<td></td>
</tr>
</tbody>
</table>
 - Reduction of power supply voltage
 - Wiring error
 - Breaking of the connection wires between the indoor and outdoor units (wire No. 3)
 - Defective outdoor unit PCB
 - Short circuit inside the fan motor winding
 - Defective indoor unit PCB
 - Disturbed power supply waveform
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the power supply voltage.

Is the voltage fluctuation within ±10% from the rated value?

NO

Correct the power supply.

YES

Check the connection wires between the indoor unit and the outdoor unit.

Is there any wiring error?

YES

Correct the connection wires between the indoor unit and the outdoor unit.

NO

Check the voltage of the connection wires on the indoor terminal strip/block between No. 1 and No. 3, and between No. 2 and No. 3.

Properly insulated?

NO

Replace the connection wires between the indoor unit and outdoor unit.

YES

Check the LED A on the outdoor unit PCB.

Is LED A blinking?

Continuously ON or OFF

Replace the outdoor unit PCB (main PCB).

Blink

Rotate the outdoor fan manually. Does the outdoor fan rotate smoothly?

NO

Replace the outdoor fan motor and the outdoor unit PCB (main PCB).

YES

Check No.11
Check the power supply waveform.

Is there any disturbance?

NO

Replace the indoor unit PCB (control PCB).

YES

Locate and eliminate the cause of the disturbance of the power supply waveform.
Reference Check No.11 Refer to P.235
5.7 Mismatching of Indoor Unit and Outdoor Unit

Error Code	UA

Method of Error Detection
The supply power is detected for its requirements (pair type is different from multi type) by the indoor/outdoor transmission signal.

Error Decision Conditions
The pair type and multi type are interconnected.

Supposed Causes
- Wrong models interconnected
- Wrong wiring of connecting wires
- Wrong indoor unit PCB or outdoor unit PCB mounted
- Defective indoor unit PCB
- Defective outdoor unit PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the combination of the indoor and outdoor unit.

OK?

YES

NO

Are the connecting wires connected properly?

YES

Match the compatible models.

Correct the connection.

NO

Check the part numbers of the indoor and outdoor unit PCB with the Parts List. If not matched, change for the correct PCB.

(R20001)
6. Troubleshooting for SA Indoor Unit

6.1 Indoor Unit PCB Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>A1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>The system checks the data from EEPROM.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>When the data from the EEPROM is not received correctly</td>
</tr>
</tbody>
</table>
| Supposed Causes | ■ Defective indoor unit PCB
■ External factor (noise etc.) |
| Troubleshooting |

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn off the power. Then, turn on the power to restart the system.

Normal?
NO
YES
Replace the indoor unit PCB (control PCB).
External factor other than malfunction (for example, noise etc.)
6.2 Drain Level Control System Abnormality

Error Code: **A3**

Method of Error Detection
The float switch detects error.

Error Decision Conditions
When the water level reaches its upper limit and when the float switch turns OFF

Supposed Causes
- Defective drain pump
- Improper drain piping work
- Clogged drain piping
- Defective float switch
- Defective indoor unit PCB
- Defective short circuit connector X15A, X25A on indoor unit PCB

Troubleshooting

```plaintext
Caution: Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Is the drain pump connected to X25A on the indoor unit PCB?
  NO: Connect the drain pump.
  YES: Does the drain pump work after the power supply is on?
    NO: Is the voltage of connector X25A 13 VDC?
      NO: Replace the indoor unit PCB (control PCB).
      YES: Replace the drain pump.
    YES: Is the drain water level abnormally high?
      NO: Is the float switch connected to X15A?
        NO: Connect the float switch.
        YES: Remove the float switch from X15A, short circuit X15A, and restart operation.
      YES: Does A3 appear on the remote controller display?
        NO: Replace the float switch.
        YES: Replace the indoor unit PCB (control PCB).
```

(R25079)
6.3 Indoor Fan Motor or Related Abnormality

6.3.1 Indoor Fan Motor (DC Motor) or Related Abnormality

Applicable Models
FDMQ09/12/15/18/24RVJU

Error Code
A6

Method of Error Detection
- Detection from the current flow on the fan PCB
- Detection from the rotation speed of the fan motor in operation

Error Decision Conditions
The rotation speed is less than a certain level for 6 seconds.

Supposed Causes
- Clogged foreign matter
- Disconnection of fan motor connectors
- Disconnection of the connector between the indoor unit PCB and the fan PCB
- Defective fan PCB
- Defective fan motor
- No fuse continuity

Trouble Shooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn OFF the power supply and wait for 10 minutes.

There is a foreign matter around the fan.
- YES Remove the foreign matter.
- NO

The fan motor connector (1) is connected to the fan PCB.
- YES
- NO Connect the connector correctly.

The connector between the indoor unit control PCB and the fan PCB is connected.
- YES
- NO Connect the connector correctly.

There is a continuity in the fuse (2) on the fan PCB or fan motor harness.
- YES Replace the fuse.
- NO

A Go to the next page

Caution
Turn ON the power supply while the fan motor connector (*1) is disconnected.

The HAP lamp on the indoor unit control PCB is blinking while the HAP lamp on the fan PCB is not blinking.

Turn OFF the power supply and wait for 10 minutes.

Check No.02
Check the fan motor connectors.

Each resistance between the pins is equal to or lower than 1 Ω.

YES
Replace the fan motor. Replace the fan PCB (A2P).

NO
Replace the fan PCB (A2P).
When A6 abnormality still reoccurs, replace the fan motor.

Replace the fan motor.

Note
Connector and indoor unit PCB

<table>
<thead>
<tr>
<th>Model</th>
<th>*1 Fan motor connector</th>
<th>*2 Fuse</th>
</tr>
</thead>
<tbody>
<tr>
<td>FDMQ Series</td>
<td>X8A</td>
<td>F2U</td>
</tr>
</tbody>
</table>

Reference
Check No.02 Refer to P. 233
6.3.2 Indoor Fan Motor (DC Motor) or Related Abnormality

<table>
<thead>
<tr>
<th>Applicable Models</th>
<th>FFQ09/12/15/18Q2VJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error Code</td>
<td>A6</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>The rotation speed detected by the Hall IC during indoor fan motor operation determines abnormal fan motor operation.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The fan motor is not revved up.</td>
</tr>
</tbody>
</table>
| Supposed Causes | ▪ Layer short inside the fan motor winding
| | ▪ Breaking of wire inside the fan motor
| | ▪ Breaking of the fan motor lead wires
| | ▪ Defective indoor unit PCB |
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Check the power supply voltage.
 - **Is the voltage fluctuation within ±10% from the rated value?**
 - **YES**
 - Correct the power supply.
 - **NO**
 - Turn off the power supply. (Unplug the power cable or turn the breaker off.)

2. Check the connector for connection.
 - **OK?**
 - **NO**
 - Correct the connection.
 - **YES**
 - **YES**
 - Foreign matters in or around the fan?
 - **YES**
 - Remove the foreign matters.
 - **NO**
 - Rotate the fan by hand.

3. Does the fan rotate smoothly?
 - **NO**
 - Replace the indoor fan motor.
 - **YES**
 - Turn on the power on again and start operation.

4. Check No.02: Check the output of the fan motor connector.
 - **Motor power supply voltage 290 ~ 330 VDC or more?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - **Motor control voltage 15 VDC generated?**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - **Rotation command voltage 0 ~ 2 VDC when stopped, 2 ~ 5 VDC when operated**
 - **NO**
 - Replace the indoor unit PCB (control PCB).
 - **YES**
 - Replace the indoor fan motor.

Note: The motor may break when the motor connector is disconnected while the power is turned on. (Be sure to turn off the power before reconnecting the connector.)
Reference

Check No.02 Refer to P. 233
6.4 Indoor Fan PCB Abnormality

Applicable Models
FDMQ09/12/15/18/24RVJU

Error Code
A8

Method of Error Detection
Microcomputer checks the voltage state of the fan PCB.

Error Decision Conditions
Overvoltage or voltage drop is detected on the fan PCB.

Supposed Causes
- Defective fan PCB
- External factor such as noise

Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. **Is the connector X70A on the indoor unit control PCB connected correctly?**
 - YES
 - NO
 - Connect the connector correctly.

2. **Is the connector X3A on the fan PCB connected correctly?**
 - YES
 - NO
 - Connect the connector correctly.

3. **Is the harness connecting X3A and X70A broken?**
 - YES
 - Replace the harness.
 - NO

4. **Is there any external factor such as noise?**
 - YES
 - Remove the external factor.
 - NO
 - **Turn OFF the power supply and then turn it ON again.**
 - Start operation with the remote controller.

5. **Error is displayed again.**
 - NO
 - Normal.
 - YES
 - Check for the indoor unit control PCB (A1P) and the fan PCB (A2P).
6.5 Humidifier or Related Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>AF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>Water leakage from humidifier(s) is detected based on the float switch ON/OFF changeover while the system is not operating.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The float switch changes from ON to OFF while the system is OFF</td>
</tr>
</tbody>
</table>
| Supposed Causes | ■ Defective float switch
■ Error in water drain system of humidifier(s)
■ Clogged electric expansion value in humidifier(s)
■ Defective indoor unit PCB |

Troubleshooting

⚠️ Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

The float switch may be defective. Check if the drain-up height and the horizontal pipe length exceed the specifications.

Clogged water drain system, clogged drain pump, or faulty float switch

Replace the indoor unit PCB (control PCB). (R24055)

Is the water drain system of the humidifier normal?

YES

Humidifier(s) connected to the system?

NO

YES

NO

The system continues to operate with the thermostat OFF even while the error code is displayed.

Note
6.6 Thermistor or Related Abnormality

Error Code: C4, C5, C9

Method of Error Detection
The temperatures detected by the thermistors determine thermistor errors.

Error Decision Conditions
The thermistor is disconnected or shorted while the unit is running.

Supposed Causes
- Disconnection of connector
- Defective thermistor(s)
- Breaking of wires
- Defective indoor unit PCB

Troubleshooting
If the cause of the problem is related to the thermistors, the thermistors should be checked prior to changing the indoor unit PCB.

To check the thermistors, proceed as follows:
1. Disconnect the thermistor from the indoor unit PCB.
2. Read the temperature and the resistance value.
3. Check if the measured values correspond with the values in the table of thermistor resistance check.

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check No. 01
Check the thermistor resistance value.

C4: Indoor heat exchanger thermistor 1 (liquid pipe) (R2T)
C5: Indoor heat exchanger thermistor 2 (R3T)
C9: Room temperature thermistor (R1T)

Note
When replacing the defective thermistor(s), replace the thermistor as ASSY.

Reference
Check No.01 Refer to P.232
6.7 Presence Sensor or Floor Sensor Abnormality

Applicable Models
FFQ09/12/15/18Q2VJU

Error Code
CE

Method of Error Detection
The system detects abnormality by the output signal from the sensor(s).

Error Decision Conditions
The sensor is disconnected or shorted while the unit is running.

Supposed Causes
- Disconnection of connector
- Breaking of wires
- Defective sensor(s)
- Defective sensor kit PCB

Troubleshooting
If the cause of the problem is related to the sensors, the sensors should be checked prior to changing the indoor unit PCB.

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Caution

1. Check the connection of connector X81A on indoor unit PCB.
 - Normal? NO → Correct the connection.
 - YES
2. Check the connection of connectors on the sensor kit.
 - Normal? NO → Connect the connectors properly.
 - YES
3. Turn off the power. Then, turn on the power to restart the system.
 - CE error displayed again? NO → Normal
 - YES → Replace the sensor kit.

Note
When replacing the defective sensor(s), replace the sensor kit as ASSY.
6.8 Remote Controller Thermistor Abnormality

Error Code

<table>
<thead>
<tr>
<th>CJ</th>
</tr>
</thead>
</table>

Method of Error Detection

Even if remote controller thermistor is faulty, system is possible to operate by system thermistor. Malfunction detection is carried out by the temperature detected by the remote controller thermistor.

Error Decision Conditions

The remote controller thermistor is disconnected or shorted while the unit is running.

Supposed Causes

- Defective room temperature thermistor in the wired remote controller
- Defective wired remote controller PCB
- External factor such as noise

Troubleshooting

![Caution]

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Delete the record of error codes. (Refer to Note)

Is CJ displayed on the remote controller again?

- YES
 - Replace the remote controller.

- NO
 - External factor other than equipment malfunction. (for example, noise etc.)

Note

To delete the record of error codes, press **ON/OFF** button on the remote controller for 4 seconds or more while the error code is displayed in the inspection mode.
6.9 Signal Transmission Error (Between Indoor and Outdoor Unit)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>The signal transmission data from the outdoor unit is checked whether it is normal.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The data sent from the outdoor unit cannot be received normally, or the content of the data is abnormal.</td>
</tr>
<tr>
<td>Supposed Causes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power supply voltage out of specification</td>
</tr>
<tr>
<td></td>
<td>Reduction of power supply voltage</td>
</tr>
<tr>
<td></td>
<td>Wiring error</td>
</tr>
<tr>
<td></td>
<td>Breaking of the connection wires between the indoor and outdoor units (wire No. 3)</td>
</tr>
<tr>
<td></td>
<td>Defective outdoor unit PCB</td>
</tr>
<tr>
<td></td>
<td>Short circuit inside the fan motor winding</td>
</tr>
<tr>
<td></td>
<td>Defective indoor unit PCB</td>
</tr>
<tr>
<td></td>
<td>Disturbed power supply waveform</td>
</tr>
</tbody>
</table>
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the power supply voltage.

- Is the voltage fluctuation within ±10% from the rated value?
 - NO Correct the power supply.
 - YES

Check the connection wires between the indoor unit and the outdoor unit.

- Is there any wiring error?
 - YES Correct the connection wires between the indoor unit and the outdoor unit.
 - NO

Check the voltage of the connection wires on the indoor terminal block between No. 1 and No. 3, and between No. 2 and No. 3.

- Properly insulated?
 - NO Replace the connection wires between the indoor unit and outdoor unit.
 - YES

Check the LED A on the outdoor unit PCB.

- Is LED A blinking?
 - Continuously ON or OFF Replace the outdoor unit PCB (main PCB).
 - Blink
 - Rotate the outdoor fan manually. Does the outdoor fan rotate smoothly?
 - NO Replace the outdoor fan motor and the outdoor unit PCB (main PCB).
 - YES

Check No.11
Check the power supply waveform.

- Is there any disturbance?
 - NO Replace the indoor unit PCB (control PCB).
 - YES Locate and eliminate the cause of the disturbance of the power supply waveform.

Reference
Check No.11 Refer to P.235
6.10 Signal Transmission Error (Between Indoor Unit and Remote Controller)

Error Code

U5

Method of Error Detection

In case of controlling 1 indoor unit with 2 remote controllers, check the system using microcomputer if signal transmission between indoor unit and remote controller (main and sub) is normal.

Error Decision Conditions

Normal transmission does not continue for specified period.

Supposed Causes

- Connection of 2 main remote controllers (when using 2 remote controllers)
- Defective indoor unit PCB
- Defective remote controller
- Transmission error caused by noise

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Using 2 remote controllers for 1 indoor unit? YES
 - Are both remote controllers set to MAIN? YES
 - DO the service monitors of all the indoor units blink? NO
 - Set 1 remote controller to SUB; turn the power supply off once and then back on. When using both wired and wireless remote controllers for 1 indoor unit, make sure to set the wireless remote controller to SUB. NO
 - Does operation return to normal when the power is turned off momentarily? NO
 - Replace the indoor unit PCB (control PCB). YES
 - There is possibility of malfunction caused by noise. Check the surrounding area and turn on again.
 - NO
 - Replace the remote controller.

- NO
 - Return to normal? YES
 - Normal
 - NO
 - Replace the indoor unit PCB.

- NO
 - Return to normal? YES
 - Normal
 - NO
 - There is possibility of malfunction caused by noise. Check the surrounding area and turn on again.

Note

For the way to change MAIN/SUB setting of remote controllers, refer to pages 267 and 268.
6.11 Signal Transmission Error (Between MAIN/SUB Remote Controllers)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U8</th>
</tr>
</thead>
</table>

Method of Error Detection
In case of controlling 1 indoor unit with 2 remote controllers, check the system using microcomputer if signal transmission between MAIN remote controller and SUB remote controller is normal.

Error Decision Conditions
Normal transmission does not continue for specified period.

Supposed Causes
- Remote controller is set to SUB when using 1 remote controller
- Connection of 2 SUB remote controllers (when using 2 remote controllers)
- Defective remote controller PCB

Troubleshooting

![Decision Tree]

1. **Caution**
 - Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

2. **Note**
 - For the way to change MAIN/SUB setting of remote controllers, refer to pages 267 and 268.
6.12 Mismatching of Indoor Unit and Outdoor Unit

Error Code

UA

Error Decision

Conditions

Improper combination of indoor and outdoor units

Supposed Causes

- Defective indoor unit PCB
- Indoor-outdoor unit transmission wiring error
- Defective optional unit(s) wirings
- Improper power supply wiring of indoor unit
- Improper wiring of connecting wires between indoor/outdoor units

Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Is the combination of indoor/outdoor units correct?
 - NO Connect the indoor/outdoor units correctly.
 - YES
 - Do the service monitors of all the indoor units blink?
 - Blink
 - Continuous ON or OFF
 - Are the wirings between indoor unit and outdoor unit correctly connected?
 - NO Connect the wirings correctly.
 - YES
 - Is the optional units power supply connected from the indoor unit terminal block No.1 and No.2?
 - NO Connect the wirings correctly.
 - YES
 - Is the voltage between No.1 and No.2 on the indoor unit terminal block 208 - 230 VAC?
 - NO Could be incorrect wiring. Check again.
 - YES Check the power supply system inside the indoor unit.
 - NO
 - Are the wirings between indoor unit and outdoor unit correctly connected?
 - NO Connect the wirings correctly.
 - YES Replace the indoor unit PCB (control PCB).
 - YES Normal

Turn off the power supply. Then, turn on the power supply to restart the system.

(R24591)
7. Troubleshooting for Outdoor Unit

7.1 Refrigerant Shortage

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U0</th>
</tr>
</thead>
</table>

Outdoor Unit LED Display

A 1 2 3 4 5

Method of Error Detection

Refrigerant shortage is detected by checking the input current value and the compressor running frequency. If there is insufficient refrigerant, the input current tends to be lower than the normal value.

Error Decision Conditions

The following conditions continue for 7 minutes.

- Input current ≤ A × output frequency + B
- Output frequency > C

<table>
<thead>
<tr>
<th>A (coefficient)</th>
<th>B (A)</th>
<th>C (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500/256</td>
<td>50</td>
<td>40</td>
</tr>
</tbody>
</table>

- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error

Supposed Causes

- The installation space not large enough
- Dirty outdoor heat exchanger
- Defective outdoor fan motor
- Disconnection of the discharge pipe thermistor, indoor or outdoor heat exchanger thermistor, room or outdoor temperature thermistor
- Closed stop valve
- Refrigerant shortage (refrigerant leakage)
- Poor compression performance of compressor
- Defective electronic expansion valve
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Check the installation space.
2. Check No. 17: Check the installation condition.
 - OK: Go to Check No. 19.
 - NG: Change the installation location or direction. Clean the outdoor heat exchanger.
3. Check No. 19: Check the outdoor fan.
 - OK: Reconnect the thermistor(s).
 - NG: Replace the outdoor fan motor. Reconnect the connector or fan motor lead wires.
4. Any thermistor disconnected?
 - NO: Check the connection of the power transistor harness. Also, replace any cracked pipes.
 - YES: Reconnect the thermistor(s).
5. Stop valve closed?
 - YES: Open the stop valve.
 - NO: Check for refrigerant shortage.
6. Oil leak at relay pipe connections?
 - YES: Repair the pipe flare or replace the union.
 - NO: Oil leak at internal piping?
7. NO: Check No. 17.
8. YES: Compressor vibrating too much?
 - NO: Check if any harnesses are in contact with the piping and correct as required. Also, replace any cracked pipes.
 - YES: Check the connection of the power transistor harness. Also, replace any cracked pipes.

A: Go to the next page
A Continued from the previous page

Check No. 12 Electronic expansion valve functioning?

NO Replace the electronic expansion valve.

YES Change for a specified amount of fresh refrigerant.

YES Refrigerant shortage error again?

NO Check No. 01 Check the thermistors.

NG Replace the defective thermistor(s).

OK Replace the outdoor unit PCB (main PCB).

YES Error again?

YES Replace the compressor.

NO Completed.

Completed.

Reference Check No.01 Refer to P.232
Reference Check No.12 Refer to P.236
Reference Check No.17 Refer to P.240
Reference Check No.19 Refer to P.241
7.2 Low-voltage Detection or Over-voltage Detection

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A ● 1 ● 2 ● 3 ● 4 ● 5 ●</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td></td>
</tr>
<tr>
<td>Indoor Unit</td>
<td>The zero-cross detection of the power supply is evaluated by the indoor unit PCB.</td>
</tr>
<tr>
<td>Outdoor Unit</td>
<td>Low-voltage detection: An abnormal voltage drop is detected by the DC voltage detection circuit. Over-voltage detection: An abnormal voltage rise is detected by the over-voltage detection circuit.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td></td>
</tr>
<tr>
<td>Indoor Unit</td>
<td>There is no zero-cross detection in approximately 10 seconds.</td>
</tr>
<tr>
<td>Outdoor Unit</td>
<td>Low-voltage detection:</td>
</tr>
<tr>
<td></td>
<td>- The voltage detected by the DC voltage detection circuit is below 180 V for 0.1 second.</td>
</tr>
<tr>
<td></td>
<td>- If the error repeats, the system is shut down.</td>
</tr>
<tr>
<td></td>
<td>- Reset condition: Continuous run for about 60 minutes without any other error</td>
</tr>
<tr>
<td>Over-voltage detection:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- An over-voltage signal is fed from the over-voltage detection circuit to the microcomputer.</td>
</tr>
<tr>
<td></td>
<td>- The compressor stops if the error occurs, and restarts automatically after 3-minute standby.</td>
</tr>
<tr>
<td>Supposed Causes</td>
<td></td>
</tr>
<tr>
<td>Power supply voltage out of specification</td>
<td></td>
</tr>
<tr>
<td>Defective DC voltage detection circuit</td>
<td></td>
</tr>
<tr>
<td>Defective over-voltage detection circuit</td>
<td></td>
</tr>
<tr>
<td>Defective PAM control part</td>
<td></td>
</tr>
<tr>
<td>Disconnection of compressor harness</td>
<td></td>
</tr>
<tr>
<td>Short circuit inside the fan motor winding</td>
<td></td>
</tr>
<tr>
<td>Noise</td>
<td></td>
</tr>
<tr>
<td>Momentary drop of voltage</td>
<td></td>
</tr>
<tr>
<td>Momentary power failure</td>
<td></td>
</tr>
<tr>
<td>Defective outdoor unit PCB</td>
<td></td>
</tr>
<tr>
<td>Defective indoor unit PCB</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

![Caution] Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the power supply voltage.

- Is the voltage fluctuation within ±10% from the rated value?
 - NO: Correct the power supply.
 - YES: Check the connection of the compressor harness.

- Loose or disconnected?
 - YES: Reconnect the harness.
 - NO: Does the outdoor fan rotate smoothly?
 - NO: Replace the outdoor fan motor and the outdoor unit PCB (main PCB).
 - YES: Replace the outdoor unit PCB (main PCB).

- Turn on the power. System restarted? (Repeat a few times.)
 - YES: Disturbance factors
 - Noise
 - Power supply distortion
 - Check for such factors for a long term.
 - NO: Error again within 3 minutes after turning on the power?
 - NO: Replace the indoor unit PCB (control PCB).
 - YES: Replace the indoor unit PCB (control PCB).
7.3 Wiring Error Check Unexecuted

Error Code

U3

Outdoor Unit LED Display

A ● 1 ● 2 ● 3 ● 4 ● 5 ●

Method of Error Detection

The system checks if wiring error check is executed after clearing the memory.

Error Decision Conditions

An error is determined when the unit is operated by the remote controller without executing wiring error check after the memory was cleared.

Supposed Causes

The wiring error switch (SW3) may have been pressed for 10 seconds or more and the memory may have been deleted. The unit cannot be operated unless wiring error check is executed.

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Caution

Wiring error check executed? NO YES

→ Conduct wiring error check.

Wiring error check may not have been finished because of the trouble of indoor/outdoor unit. Conduct wiring error check again.

Reference

Refer to Wiring Error Check Function on page 249 for details.
7.4 Unspecified Voltage (Between Indoor Unit and Outdoor Unit), Anti-icing Control in Other Rooms

Error Code

UA, UH

Outdoor Unit LED Display

A 1 2 3 4 5

Method of Error Detection

A wrong connection is detected by checking the combination of indoor and outdoor units on the microcomputer.

Error Decision Conditions

- Anti-icing control in other rooms
- Unspecified internal and/or external voltages
- Mismatching of indoor and outdoor units

Supposed Causes

- Anti-icing function in other rooms
- Power supply voltage out of specification
- Wrong models interconnected
- Wrong indoor unit PCB or outdoor unit PCB mounted

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Error displayed while operating? NO The anti-icing function is activated in other rooms. Refer to A5.

YES

Power supply voltage as specified? NO Correct the power supply voltage.

YES

Check the model combination.

Matched compatibly? NO Match the compatible models.

YES

Check the combination of all connected models.

(R21922)

Note

Refer to Anti-icing control for indoor unit on page 202 for details.
7.5 Anti-icing Control for Indoor Unit

<table>
<thead>
<tr>
<th>Error Code</th>
<th>A5</th>
</tr>
</thead>
</table>

Outdoor Unit LED Display
A 1 2 3 4 5

Method of Error Detection
During cooling operation, indoor unit icing is detected by checking the temperatures sensed by the indoor heat exchanger thermistor and room temperature thermistor that are located in a shut-down room.

Error Decision Conditions
- In cooling operation, the both conditions (A) and (B) are met for 5 minutes.
 - (A) Room temperature – Indoor heat exchanger temperature ≥ 10°C (18°F)
 - (B) Indoor heat exchanger temperature ≤ –1°C (30.2°F)
- If the error repeats, the system is shut down.
- Reset condition: 3-minute standby is over and the indoor heat exchanger temperature is above 0°C (32°F)

Supposed Causes
- Wrong wiring or piping
- Defective electronic expansion valve
- Short-circuited air
- Defective indoor heat exchanger thermistor
- Defective room temperature thermistor
Troubleshooting

Check No. 01
Check the outdoor heat exchanger thermistor.

- As described in the thermistor characteristic chart?
 - NO: Replace the outdoor heat exchanger thermistor.
 - YES: Replace the room temperature thermistor.

- Error again?
 - NO: Replace the indoor unit PCB (control PCB) and then start the wiring error check function.
 - YES: Replace the room temperature thermistor or indoor heat exchanger thermistor. Do the vacuum drying.

- Change the refrigerant to remove moisture from the piping (after drawing a vacuum).

Check No. 12
Check the electronic expansion valve.

- Functioning?
 - NO: Replace the electronic expansion valve or coil.
 - YES: Activate the wiring error check function.

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Check the wiring and piping.

Reference
- Check No.01 Refer to P.232
- Check No.12 Refer to P.236
7.6 Outdoor Unit PCB Abnormality

Error Code

| E1 |

Outdoor Unit LED Display

A : 1 2 3 4 5

Method of Error Detection

Detect within the program of the microcomputer.

Error Decision Conditions

The program of the microcomputer is in abnormal running order.

Supposed Causes

- Defective outdoor unit PCB
- Noise
- Momentary drop of voltage
- Momentary power failure

Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Turn on the power.
2. Error again? YES
 - Replace the outdoor unit PCB (main PCB).
 - NO
 - Check if the outdoor unit is grounded.
3. Grounded? NO
 - Ground the system.
 - YES
 - The cause can be external factors other than malfunction. Investigate the cause of noise.
7.7 OL Activation (Compressor Overload)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A 1 2 3 4 5</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>A compressor overload is detected through compressor OL.</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | If the error repeats, the system is shut down.
Reset condition: Continuous run for about 60 minutes without any other error |
| Supposed Causes | Disconnection of discharge pipe thermistor
Defective discharge pipe thermistor
Disconnection of connector S40
Disconnection of 2 terminals of OL (Q1L)
Defective OL (Q1L)
Broken OL harness
Defective electronic expansion valve or coil
Defective four way valve or coil
Defective outdoor unit PCB
Refrigerant shortage
Water mixed in refrigerant
Defective stop valve |
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Discharge pipe thermistor disconnected?
- **YES** → Insert the thermistor in position.
- **NO** → Check No. 01

Check No. 01
- **NG** → Replace the discharge pipe thermistor.
- **OK** → Is the connector S40 properly connected?

- **NO** → Connect the connector S40 properly.
- **YES** → Disconnect the connector S40 from the PCB.

Check the resistance between the 2 terminals on connector S40.
- **Nearly 0 Ω**
 - **OK** → Check No. 12
 - **NG** → Replace the electronic expansion valve or the coil.

Check No. 12
- **NG** → Replace the electronic expansion valve or the coil.
- **OK** → Check No. 13

Check No. 13
- **NG** → Replace the four way valve or the coil.
 - **OK** → Refer to the refrigerant line check procedure.
 - **NG**
 - Refrigerant shortage
 - Water mixed
 - Stop valve

Check No. 14
- **NG** → Refer to the refrigerant line check procedure.
- **OK** → Replace the outdoor unit PCB (main PCB).

Note
OL (Q1L) activating temperature: 125°C (257°F)
OL (Q1L) recovery temperature: 110°C (230°F)

Reference
- **Check No.01** Refer to P.232
- **Check No.12** Refer to P.236
Reference Check No.13 Refer to P.237
Reference Check No.14 Refer to P.237
7.8 Compressor Lock

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A 1 2 3 4 5</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>A compressor lock is detected by checking the compressor running condition through the position detection circuit.</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | - Judging from the current waveform generated when high-frequency voltage is applied to the compressor.
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 5 minutes without any other error |
| Supposed Causes | - Closed stop valve
- Defective outdoor unit PCB
- Defective compressor
- Defective electronic expansion valve |
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

(Precaution before turning on the power again)
Make sure the power has been off for at least 30 seconds.

Stop valve closed?

YES

Open the stop valve.

NO

Turn off the power. Disconnect the harnesses U, V, and W.

Check No.15
Check with the inverter analyzer.

* Inverter analyzer: RSUK0917C

Any LED off?

NO

Correct the power supply or replace the outdoor unit PCB (main PCB).

YES

Turn off the power and reconnect the harnesses. Turn on the power again and restart the system.

Emergency stop without compressor running?

YES

Replace the compressor.

NO

System shut down after errors repeated several times?

NO

Check the electronic expansion valve coil. Go to Check No. 12.

YES

Replace the compressor.

Reference

Check No.12 Refer to P.236

Check No.15 Refer to P.238
7.9 DC Fan Lock

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A ⊗ 1 ⊗ 2 ⊗ 3 ⊗ 4 ⊗ 5 ●</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>An error is determined with the high-voltage fan motor rotation speed detected by the Hall IC.</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | ■ The fan does not start in 30 seconds even when the fan motor is running.
■ If the error repeats, the system is shut down.
■ Reset condition: Continuous run for about 5 minutes without any other error |
| Supposed Causes | ■ Disconnection of the fan motor
■ Foreign matter stuck in the fan
■ Defective fan motor
■ Defective outdoor unit PCB |
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Fan motor connector disconnected? YES
 NO

Foreign matters in or around the fan? YES
 NO

Turn on the power.

Rotate the fan.

Fan rotates smoothly? NO
 YES

Check No. 16
Check the rotation pulse input on the outdoor unit PCB (main PCB).

Pulse signal generated? NO
 YES

Replace the outdoor unit PCB (main PCB).

Reference

Check No. 16 Refer to P.240
7.10 Input Overcurrent Detection

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A ● 1 ● 2 ● 3 ● 4 ● 5 ●</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>Detected by checking the input current value</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | ■ The input current is at a certain value (depending on the condition) for 2.5 seconds.
■ The compressor halts if the error occurs, and restarts automatically after 3-minute standby. |
| Supposed Causes | ■ Outdoor temperature is out of operation range.
■ Defective compressor
■ Defective power module
■ Defective outdoor unit PCB
■ Short circuit |
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

* An input overcurrent may result from wrong internal wiring. If the system is interrupted by an input overcurrent after the wires have been disconnected and reconnected for part replacement, check the

Check No. 17
Check the installation condition.

Start operation and measure the input current.

- Input current flowing above its stop level?
 - NO
 - YES

Turn off the power and disconnect the harnesses U, V, and W.

Check No.15
Check with the inverter analyzer.

- Any LED off?
 - YES
 - NO

Turn off the power, and reconnect the harnesses. Turn on the power again and start operation.

Check No. 18
Check the discharge pressure.

Replace the outdoor unit PCB (main PCB).

* Inverter analyzer: RSUK0917C

Correct the power supply or replace the outdoor unit PCB (main PCB).

Reference

- Check No.15 Refer to P.238
- Check No.17 Refer to P.240
- Check No.18 Refer to P.241
7.11 Four Way Valve Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>EA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A ♘ 1 ♗ 2 ♘ 3 ♗ 4 ♘ 5 ♗</td>
</tr>
</tbody>
</table>

Method of Error Detection
The liquid pipe thermistor and the outdoor heat exchanger thermistor are checked to see if they function within their normal ranges in the operating mode.

Error Decision Conditions
The following condition continues for A seconds after the compressor has started.

- **Cooling operation**
 - The lowest liquid pipe temperature among the rooms in operation – Tde > 45°C (113°F)
- **Heating operation**
 - The highest liquid pipe temperature among the rooms in operation – Tde < 0°C (32°F)

<table>
<thead>
<tr>
<th>A (seconds)</th>
<th>Cooling</th>
<th>Heating</th>
</tr>
</thead>
<tbody>
<tr>
<td>460</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Tde: outdoor heat exchanger temperature

Supposed Causes
- Disconnection of four way valve coil
- Defective four way valve, coil, or harness
- Defective outdoor unit PCB
- Defective thermistor
- Refrigerant shortage
- Water mixed in refrigerant
- Defective stop valve
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check No. 01
Check the thermistors.

YES
Reconnect the thermistor(s).

NO
Replace the defective thermistor(s).

Check No. 01
Check the thermostats.

NG
Replace the outdoor unit PCB (main PCB).

OK
Correct the four way valve coil.

Check No. 13
Check the four way valve switching output.

NG
Replace the four way valve coil.

OK
Correct the four way valve coil.

Check No. 14
Check the refrigerant line.

NG
Replace the four way valve coil.

OK
Correct the four way valve coil.

Reference

Check No. 01 Refer to P.232

Check No. 13 Refer to P.237

Check No. 14 Refer to P.237

(R20405)
7.12 Discharge Pipe Temperature Control

Error Code F3

Outdoor Unit LED Display A: 1 2 3 4 5

Method of Error Detection An error is determined with the temperature detected by the discharge pipe thermistor.

Error Decision Conditions
- If the temperature detected by the discharge pipe thermistor rises above \(A \), the compressor stops.
- The error is cleared when the discharge pipe temperature is dropped below \(B \).

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>120°C (248°F)</td>
<td>107°C (224.6°F)</td>
</tr>
</tbody>
</table>

- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error

Supposed Causes
- Defective discharge pipe thermistor (Defective outdoor heat exchanger thermistor or outdoor temperature thermistor)
- Defective electronic expansion valve or coil
- Refrigerant shortage
- Defective four way valve
- Water mixed in refrigerant
- Defective stop valve
- Defective outdoor unit PCB

Troubleshooting

| Check No. 01 | Check the thermistors. NG Replace the defective thermistor(s). |
| Check No. 12 | Check the electronic expansion valve. NG Replace the electronic expansion valve or the coil. |
| Check No. 14 | Check the refrigerant line. NG Refer to the refrigerant line check procedure. OK Replace the outdoor unit PCB (main PCB). |

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Reference
- Check No.01 Refer to P.232
- Check No.12 Refer to P.236
- Check No.14 Refer to P.237
7.13 High Pressure Control in Cooling

<table>
<thead>
<tr>
<th>Error Code</th>
<th>F6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A ● 1 ○ 2 ● 3 ○ 4 ○ 5 ●</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>High pressure control (operation halt, frequency drop, etc.) is activated in cooling operation if the temperature sensed by the outdoor heat exchanger thermistor exceeds the limit.</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | - The temperature sensed by the outdoor heat exchanger thermistor rises above about 62.5°C (144.5°F).
- The error is cleared when the temperature drops below about 49.5°C (121.1°F). |
| Supposed Causes | - The installation space not large enough
- Dirty outdoor heat exchanger
- Defective outdoor fan motor
- Defective stop valve
- Defective electronic expansion valve or coil
- Defective outdoor heat exchanger thermistor
- Defective outdoor unit PCB |
Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Check the installation space.

Check No. 17
Check the installation condition.

- NG
 - Change the installation location or direction. Clean the outdoor heat exchanger.
- OK

Check No. 19
Check the outdoor fan.

- NG
 - Replace the outdoor fan motor. Reconnect the connector or fan motor lead wires.
- OK

Check No. 18
Check the discharge pressure.

- NG
 - Replace the stop valve.
- OK

Check No. 12
Check the electronic expansion valve.

- NG
 - Replace the electronic expansion valve or the coil. Replace the outdoor unit PCB (main PCB).
- OK

Check No. 01
Check the outdoor heat exchanger thermistor.

- NG
 - Replace the outdoor heat exchanger thermistor.
- OK

Reference

- Check No. 01 Refer to P.232
- Check No. 12 Refer to P.236
- Check No. 17 Refer to P.240
- Check No. 18 Refer to P.241
- Check No. 19 Refer to P.241
7.14 Compressor Sensor System Abnormality

Error Code H0

Outdoor Unit LED Display A 1 2 3 4 5

Method of Error Detection
- The system checks the power supply voltage and the DC voltage before the compressor starts.
- The system checks the DC current of the compressor right after the compressor starts.

Error Decision Conditions
- The power supply voltage and the DC voltage is obviously low or high.
- The DC current of the compressor does not flow when the compressor starts.

Supposed Causes
- Disconnection of reactor
- Disconnection of compressor harness
- Defective outdoor unit PCB
- Defective compressor
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn off the power.

Check the connection of the reactor.

Connection OK?

NO

Connect the reactor properly.

YES

Check the connection of the compressor.

Connection OK?

NO

Connect the compressor properly.

YES

Check the reactor.

10 Ω or less?

NO

Replace the reactor.

YES

Disconnect the reactor from the outdoor unit PCB and measure the resistance value between reactor terminals with multimeter.

10 Ω or less between each terminal?

NO

Replace the compressor or the compressor relay harness.

YES

Disconnect the compressor relay harness from the outdoor unit PCB and measure the resistance value between the each 3 terminals of the compressor with multimeter.

Restart the operation again and if the error occurs again, replace the outdoor unit PCB (main PCB).

(R20419)
7.15 Position Sensor Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>H6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A 1 2 3 4 5</td>
</tr>
</tbody>
</table>

Method of Error Detection
A compressor start-up failure is detected by checking the compressor running condition through the position detection circuit.

Error Decision Conditions
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 5 minutes without any other error

Supposed Causes
- Power supply voltage out of specification
- Disconnection of the compressor harness
- Defective compressor
- Defective outdoor unit PCB
- Start-up failure caused by the closed stop valve
- Input voltage outside the specified range
Troubleshooting for Outdoor Unit SiUS121827E

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Troubleshooting

Turn on the power. Check the electrolytic capacitor voltage.

- **Within 320 ± 100 VDC?**
 - **NO** Replace the outdoor unit PCB (main PCB).
 - **YES**

Turn off the power.

Check the power supply voltage.

- **Is the voltage fluctuation within ±10% from the rated value?**
 - **NO** Correct the power supply.
 - **YES**

Check No. 18
Check the discharge pressure.

- **OK?**
 - **NO** Replace the stop valve.
 - **YES**

Check the connection.

- **Electrical components or compressor harnesses connected as specified?**
 - **NO** Reconnect the electrical components or compressor harnesses as specified.
 - **YES**

Check No. 20
Check the short circuit of the diode bridge.

- **Normal?**
 - **NO** Replace the outdoor unit PCB (main PCB).
 - **YES**

Disconnect the harnesses U, V, and W.

Check No. 15
Check with the inverter analyzer.

* Inverter analyzer: RSUK0917C

- **Any LED Off?**
 - **NO** Correct the power supply or replace the outdoor unit PCB (main PCB).
 - **YES** Replace the compressor.
Check No.15 Refer to P.238
Check No.18 Refer to P.241
Check No.20 Refer to P.242
7.16 Thermistor or Related Abnormality (Outdoor Unit)

Error Code

H9, J3, J6, J8, J9, P4

Outdoor Unit LED Display

A ☞ 1 ☞ 2 ☞ 3 ☞ 4 ☞ 5 ☞

Method of Error Detection

This fault is identified based on the thermistor input voltage to the microcomputer. A thermistor fault is identified based on the temperature sensed by each thermistor.

Error Decision Conditions

- The voltage between the both ends of the thermistor is above 4.96 V or below 0.04 V with the power on.
- J3 error is judged if the discharge pipe temperature is lower than the heat exchanger temperature.
- The system is shut down if all the units are judged as the J8 error.

Supposed Causes

- Disconnection of the connector for the thermistor
- Defective thermistor(s)
- Defective heat exchanger thermistor in the case of J3 error (outdoor heat exchanger thermistor in cooling operation, or indoor heat exchanger thermistor in heating operation)
- Defective outdoor unit PCB

Troubleshooting In case of P4

Replace the outdoor unit PCB (main PCB).

P4 : Radiation fin thermistor

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.
Troubleshooting In case of H9, J3, J6, J8, J9

Caution Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn on the power again.

Error displayed again on remote controller? NO

Reconnect the connectors or thermistors.

YES

Check No. 01 Check the thermistor resistance value.

Normal? NO

Replace the defective thermistor(s).

∗ Outdoor temperature thermistor
∗ Discharge pipe thermistor
∗ Outdoor heat exchanger thermistor
∗ Liquid pipe thermistor
∗ Gas pipe thermistor

YES

J3 error: The discharge pipe temperature is lower than the heat exchanger temperature.

Cooling: Outdoor heat exchanger thermistor
Heating: Indoor heat exchanger thermistor

Check No. 01 Check the indoor heat exchanger thermistor resistance value in the heating operation.

Indoor heat exchanger thermistor functioning? NO

Replace the indoor heat exchanger thermistor.

YES

Replace the outdoor unit PCB (main PCB).

H9 : Outdoor temperature thermistor
J3 : Discharge pipe thermistor
J6 : Outdoor heat exchanger thermistor
J8 : Liquid pipe thermistor
J9 : Gas pipe thermistor

Notes When replacing the defective thermistor(s), replace the thermistors as ASSY.

Reference Check No.01 Refer to P.232
7.17 Electrical Box Temperature Rise

Error Code | L3
---|---
Outdoor Unit LED Display | A 1 2 3 4 5

Method of Error Detection
An electrical box temperature rise is detected by checking the radiation fin thermistor with the compressor off.

Error Decision Conditions
- With the compressor off, the radiation fin temperature is above A.
- The error is cleared when the temperature drops below B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>70°C (158°F)</td>
<td>60°C (140°F)</td>
</tr>
</tbody>
</table>

Supposed Causes
- Defective outdoor fan motor
- Short circuit
- Defective radiation fin thermistor
- Disconnection of connector
- Defective outdoor unit PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Turn off the power. Then, turn on the power to restart the system.
- Error again or outdoor fan activated?
 - YES: Check the radiation fin temperature.
 - NO:
 - Above A?
 - NO: Replace the outdoor unit PCB (main PCB).
 - YES:
 - Check No. 19
 - Check the outdoor fan.
 - OK: Replace the outdoor fan motor.
 - Correct the connectors and fan motor lead wire.
 - Replace the outdoor unit PCB (main PCB).
 - NG: Check the installation condition. Go to Check No. 17.
 - Clean up the radiation fin.
 - Radiation fin dirty?
 - YES: Replace the outdoor unit PCB (main PCB).
 - NO: Correct the connectors and fan motor lead wire.

Reference
- Check No.17 Refer to P.240
- Check No.19 Refer to P.241
7.18 Radiation Fin Temperature Rise

<table>
<thead>
<tr>
<th>Error Code</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit LED Display</td>
<td>A 1 2 3 4 5</td>
</tr>
<tr>
<td>Method of Error Detection</td>
<td>A radiation fin temperature rise is detected by checking the radiation fin temperature with the compressor on.</td>
</tr>
</tbody>
</table>
| **Error Decision Conditions** | - The radiation fin temperature with the compressor on is above A.
- The error is cleared when the temperature drops below B.
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error |
| **Supposed Causes** | - Defective outdoor fan motor
- Short circuit
- Defective radiation fin thermistor
- Disconnection of connector
- Defective outdoor unit PCB
- Silicone grease not applied properly on the radiation fin after replacing the outdoor unit PCB |
| **A** | **B** |
| 70°C (158°F) | 64°C (147.2°F) |
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn off the power. Then, turn on the power to restart the system.

- **Error displayed again?**
 - **NO**
 - **YES**
 - **Has the PCB been replaced?**
 - **NO**
 - **YES**
 - Check if silicone grease is applied properly on the radiation fin. If not, apply the silicone grease.
 - **Above A?**
 - **NO**
 - Replace the outdoor unit PCB (main PCB).
 - **YES**
 - Replace the outdoor unit PCB (main PCB).
 - **Check the radiation fin temperature.**
 - **NO**
 - Replace the outdoor unit PCB (main PCB).
 - **YES**
 - Check the installation condition. Go to **Check No. 17**.
 - **OK**
 - **Radiation fin dirty?**
 - **NO**
 - Check the installation condition. Go to **Check No. 17**.
 - **YES**
 - Clean up the radiation fin.

Reference

- **Check No.17** Refer to P.240
- **Check No.19** Refer to P.241
- Refer to Silicone Grease on Power Transistor/Diode Bridge on page 277 for details.
7.19 Output Overcurrent Detection

<table>
<thead>
<tr>
<th>Error Code</th>
<th>L5</th>
</tr>
</thead>
</table>

Outdoor Unit LED Display

A ◆ 1 ● 2 ● 3 ◇ 4 ● 5 ●

Method of Error Detection

An output overcurrent is detected by checking the current that flows in the inverter DC section.

Error Decision Conditions

- A position signal error occurs while the compressor is running.
- A rotation speed error occurs while the compressor is running.
- An output overcurrent signal is fed from the output overcurrent detection circuit to the microcomputer.
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 5 minutes without any other error

Supposed Causes

- Poor installation condition
- Closed stop valve
- Defective power module
- Wrong internal wiring
- Abnormal power supply voltage
- Defective outdoor unit PCB
- Supply voltage out of specification
- Defective compressor
Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

* An output overcurrent may result from wrong internal wiring. If the system is interrupted by an output overcurrent after the wires have been disconnected and reconnected for part replacement, check the wiring again.

Check No. 17
Check the installation condition.

- Stop valve fully open?
 - NO: Fully open the stop valve.
 - YES: Turn off the power. Then, turn on the power to restart the system. See if the same error occurs.

- Error again?
 - NO: Monitor the power supply voltage, discharge and suction pressures, and other factors for a long term.
 - YES: Turn off the power and disconnect the harnesses U, V, and W.

Check No. 15
Check with the inverter analyzer.

- Any LED off?
 - YES: Correct the power supply or replace the outdoor unit PCB (main PCB).
 - NO: Check the connectors and other components.

Check No. 22
Check the power module.

- Normal?
 - NO: Replace the outdoor unit PCB (main PCB).
 - YES: Turn off the power, and reconnect the harnesses. Turn on the power again and start operation.

Check the power supply voltage.

- Is the voltage fluctuation within ±10% from the rated value?
 - NO: Correct the power supply.
 - YES: Check the discharge pressure. Go to Check No. 18.

- Short circuit or wire breakage between compressor’s coil phases?
 - NO: Replace the compressor.
 - YES: Replace the compressor.

Reference
Check No. 15 Refer to P.238
Check No.17 Refer to P.240
Check No.18 Refer to P.241
Check No.22 Refer to P.245
8. Check

8.1 Thermistor Resistance Check

Check No.01

Measure the resistance of each thermistor using multimeter. The resistance values are defined by below table. If the measured resistance value does not match the listed value, the thermistor must be replaced.

- Disconnect the connector of thermistor ASSY from the PCB to measure the resistance between the pins using multimeter.
- To check the thermistor soldered on a PCB, disconnect the PCB from other PCB/parts, and measure the resistance between the both ends of soldered thermistor.

<table>
<thead>
<tr>
<th>Thermistor temperature (°C)</th>
<th>Type A R (25°C (77°F)) = 20 kΩ B = 3950 K</th>
</tr>
</thead>
<tbody>
<tr>
<td>−20</td>
<td>−4</td>
</tr>
<tr>
<td>−15</td>
<td>5</td>
</tr>
<tr>
<td>−10</td>
<td>14</td>
</tr>
<tr>
<td>−5</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(°C)</th>
<th>(°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>−15</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
</tbody>
</table>

R6000517

(R14467)
8.2 Indoor Fan Motor Connector Check

Check No.02 FTXR, CTXG, CTXS, FTXS, FVXS Series
1. Check the connection of connector.
2. Check motor power supply voltage output (pins 4 - 7).
3. Check motor control voltage (pins 4 - 3).
4. Check rotation command voltage output (pins 4 - 2).
5. Check rotation pulse input (pins 4 - 1).

FDMQ Series
1. Turn the power supply OFF.
2. With the fan motor connector disconnected, measure the resistance between each pin, then make sure that the resistance is more than the value mentioned in the following table.

<table>
<thead>
<tr>
<th>Measuring points</th>
<th>Judgement</th>
</tr>
</thead>
<tbody>
<tr>
<td>White - Blue</td>
<td>1 MΩ or more</td>
</tr>
<tr>
<td>Orange - Blue</td>
<td>100 kΩ or more</td>
</tr>
<tr>
<td>Brown - Blue</td>
<td>100 Ω or more</td>
</tr>
<tr>
<td>Red - Blue</td>
<td>100 kΩ or more</td>
</tr>
</tbody>
</table>
FFQ Series
1. Check the connection of connector.
2. Check motor power supply voltage output (pins 5 - 8).
3. Check motor control voltage (pins 5 - 4).
4. Check rotation command voltage output (pins 5 - 3).

8.3 Hall IC Check

Check No.04 FDXS, CDXS Series
1. Check the connector connection.
2. With the power ON, operation OFF, and the connector connected, check the following.
 (1) Output voltage of about 5 V between pins 1 and 3.
 (2) Generation of 3 pulses between pins 2 and 3 when the fan motor is operating.

If NG in step (1) → Defective PCB → Replace the PCB (control PCB).
If NG in step (2) → Defective Hall IC → Replace the fan motor.
If OK in both steps (1) and (2) → Replace the PCB (control PCB).
8.4 Power Supply Waveform Check

Check No.11

Measure the power supply waveform between No. 1 and No. 2 on the terminal strip, and check the waveform disturbance.

- Check if the power supply waveform is a sine wave (Fig.1).
- Check if there is waveform disturbance near the zero-cross (sections circled in Fig.2).

[Fig.1] [Fig.2]
8.5 Electronic Expansion Valve Check

Check No. 12

Conduct the followings to check the electronic expansion valve (EV).

1. Check if the EV connector is correctly inserted in the PCB. Match the EV unit number and the connector number.
2. Turn the power off and on again, and check if all the EVs generate latching sound.
3. If any of the EVs does not generate latching sound in the above step 2, disconnect that connector and check the continuity using a multimeter.
 Check the continuity between the pins 5 - 1, 5 - 2, 5 - 3, 5 - 4. If there is no continuity between the pins, the EV coil is faulty.
4. If no EV generates a latching sound in the above step 2, the outdoor unit PCB is faulty.
5. If the continuity is confirmed in the above step 3, mount a good coil (which generated latching sound) in the EV unit that did not generate a latching sound, and check if that EV generates a latching sound.
 * If a latching sound is generated, the outdoor unit PCB is faulty.
 * If a latching sound is not generated, the EV unit is faulty.

If the system keeps operating with a defective electronic expansion valve, the following problem may occur.

<table>
<thead>
<tr>
<th>Valve opening position</th>
<th>Possible problem</th>
<th>Check method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cooling:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Flowing noise of refrigerant in the unit which is not in operation</td>
<td>Reset power supply and conduct cooling operation unit by unit.</td>
<td></td>
</tr>
<tr>
<td>■ Water leakage at the unit which is not in operation</td>
<td>Check the liquid pipe temperature of no-operation unit.</td>
<td></td>
</tr>
<tr>
<td>■ Operation half due to anti-icing function</td>
<td>NO The EV is not defective.</td>
<td></td>
</tr>
<tr>
<td>Heating:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Flowing noise of refrigerant in the unit which is not in operation</td>
<td>Replace the EV of the room.</td>
<td></td>
</tr>
<tr>
<td>■ The unit does not heat the room.</td>
<td>YES</td>
<td></td>
</tr>
</tbody>
</table>

| Close | | |
| Cooling: | | |
| ■ The problem unit does not cool the room. | Reset power supply and conduct cooling operation unit by unit. |
| ■ Only the problem unit is in operation, the unit starts pump down. | Check the low pressure. |
| (The low pressure of the unit becomes vacuum.) | NO The EV is not defective. |
| ■ Abnormal discharge pipe temperature | YES |
| Heating: | | |
| ■ Refrigerant shortage due to stagnation of liquid refrigerant inside the faulty indoor unit | Replace the EV of the room. |
| ■ The unit does not heat the room. | Replace the EV of the room. |
| ■ Abnormal discharge pipe temperature | (R16020) |
8.6 Four Way Valve Performance Check

Check No.13

- Turn off the power. Then, turn on the power to restart the system.
- Start heating operation.
- Disconnect the four way valve coil from the connector and check the continuity.
- Check the four way valve coil resistance at 1000 ~ 2000 Ω?
- S80 voltage at 208 - 230 VAC with compressor on?
- Four way valve coil Cooling/Dry/Defrost: Not energized
 Heating: energized

- Replace the outdoor unit PCB (main PCB).
- Replace the four way valve coil.
- Replace the four way valve.

8.7 Inverter Unit Refrigerant System Check

Check No.14

- Refrigerant system check
- Is the discharge pipe thermistor disconnected from the holder?
- Check for refrigerant leakage. See the section on refrigerant shortage detection.
- Reconnect the thermistor.
- Replace the refrigerant.
8.8 Inverter Analyzer Check

Check No.15

Characteristics

Inverter analyzer: RSUK0917C

If an abnormal stop occurs due to compressor startup failure or overcurrent output when using an inverter unit, it is difficult to judge whether the stop is caused by the compressor failure or some other failure (main PCB, power module, etc.). The inverter analyzer makes it possible to judge the cause of trouble easily and securely. Connect an inverter analyzer as a quasi-compressor instead of compressor and check the output of the inverter.

Operation Method

Step 1
Be sure to turn the power off.

Step 2
Install an inverter analyzer instead of a compressor.

Note:
Make sure the charged voltage of the built-in smoothing electrolytic capacitor drops to 10 VDC or below before carrying out the service work.

Reference:
If the terminals of the compressor are not FASTON terminals (difficult to remove the wire on the terminals), it is possible to connect wires available on site to the outdoor unit from output side of PCB. Do not connect them to the compressor at the same time, otherwise it may result in incorrect detection.

Step 3
Activate the power transistor test operation from the outdoor unit.
Press the forced cooling operation ON/OFF switch for 5 seconds.
(Refer to page 248 for the position.)
→ Power transistor test operation starts.

Diagnose method (Diagnose according to 6 LEDs lighting status.)
1. If all the LEDs are lit uniformly, the compressor is defective.
 → Replace the compressor.
2. If the LEDs are not lit uniformly, check the power module.
 → Refer to Check No.22.
3. If NG in Check No.22, replace the power module.
 (Replace the main PCB. The power module (IPM1) is united with the main PCB.)
 If OK in Check No.22, check if there is any solder cracking on the PCB.
4. If any solder cracking is found, replace the PCB or repair the soldered section.
 If there is no solder cracking, replace the PCB.

⚠️ Caution

1. When the output frequency is low, the LEDs blink slowly. As the output frequency increases, the LEDs blink quicker. (The LEDs look like they are lit.)
2. On completion of the inverter analyzer diagnosis, be sure to re-crimp the FASTON terminals. Otherwise, the terminals may be burned due to loosening.

(R15292)
8.9 Rotation Pulse Check on the Outdoor Unit PCB

Check No.16
Manually rotate the outdoor fan motor and check if 4 pulses of sinusoidal voltage are detected between pins 1-2 and then pins 2-3.

8.10 Installation Condition Check

Check No.17

- **Installation condition check**
 - Check the allowable dimensions of the air suction and discharge area.
 - **NG**
 - Change the installation location or direction.
 - **OK**
 - Is the discharged air short-circuited?
 - **YES**
 - Change the installation location or direction.
 - **NO**
 - Is the outdoor heat exchanger very dirty?
 - **YES**
 - Clean the outdoor heat exchanger.
 - **NO**
 - Is the airflow blocked by obstacles or winds blowing in the opposite direction?
 - **YES**
 - Check the outdoor temperature. (The outdoor temperature should be within the operation range.)
 - **NO**
 - Change the installation location or direction.
8.11 Discharge Pressure Check

Check No.18

Discharge pressure check

High?

YES

Is the stop valve open?

YES

Is the connection pipe deformed?

YES

Replace the pipe installed at the site.

NO

Is the stop valve open?

NO

Open the stop valve.

NO

Is the air filter or indoor/outdoor heat exchanger dirty?

YES

Replace the compressor.

NO

Clean the dirty air filter or indoor/outdoor heat exchanger.

(R21121)

8.12 Outdoor Fan System Check

Check No.19

DC motor

Check the outdoor fan system.

Is the outdoor fan running?

YES

Outdoor fan system is functioning.

NO

Fan motor lead wire connector disconnected?

YES

Reconnect the connector.

NO

Go to Check No. 16.

(R21195)
8.13 Main Circuit Short Check

Check No.20

Check to make sure that the voltage between (+) and (–) of the diode bridge (DB1) is about 0 V before checking.

- Measure the resistance between the pins of the DB1 referring to the table below.
- If the resistance is ∞ or less than 1 kΩ, short circuit occurs on the main circuit.

| Positive terminal (+) of digital multimeter | ~ (2, 3) | + (4) | ~ (2, 3) | ~ (1) |
| Negative terminal (–) of digital multimeter | + (4) | ~ (2, 3) | ~ (1) | ~ (2, 3) |

| Resistance is OK. | several kΩ ~ several MΩ |
| Resistance is NG. | 0 Ω or ∞ |

1. Turn the power off.
2. Remove the top plate (10 screws).
3. Remove the right side plate (6 screws).
4. Remove the front plate (1 screw).
 - The front plate is heavy, so take care.
5. Remove the shield plate (2 screws).
6. Measure the resistance of the pins under the refrigerant pipe cover.
7. In the case it is difficult to insert the probes from the front side, take out the PCB in the following procedure and measure the resistance from the rear side of the PCB.
 - Remove the 3 screws and open the refrigerant cover.
 - Disconnect the connectors.
 - Remove 13 screws of the PCB.
 - Pull the PCB upward to remove.
Part 6 Service Diagnosis
8.14 Capacitor Voltage Check

Check No.21
Before this check, be sure to check the main circuit for short circuit. With the circuit breaker still on, measure the voltage according to the drawing of the model in question. Be careful never to touch any live parts.

- To prevent an electrical shock, use a multimeter to check that the voltage between DC + and DC – is 50 V or less.
- The surface of the test points (DC +, DC –) may be covered with the coating. Be sure to make firm contact between the multimeter probes and the test points.
8.15 Power Module Check

Check No.22

Check to make sure that the voltage between (+) and (−) of the power module is about 0 V before checking.

- Disconnect the compressor harness connector from the outdoor unit PCB. To disengage the connector, press the protrusion on the connector.
- Follow the procedure below to measure resistance between the (+) or (−) terminal of the power module and the U, V, or W terminal of the compressor with a multimeter. Evaluate the measurement results referring to the following table.

<table>
<thead>
<tr>
<th>Positive terminal (+) of digital multimeter</th>
<th>Power module (+)</th>
<th>UVW</th>
<th>Power module (−)</th>
<th>UVW</th>
<th>Power module (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative terminal (−) of digital multimeter</td>
<td>UVW</td>
<td>Power module (+)</td>
<td>UVW</td>
<td>Power module (−)</td>
<td>UVW</td>
</tr>
<tr>
<td>Resistance is OK.</td>
<td>several kΩ ~ several MΩ</td>
<td>resistance is NG.</td>
<td>0 Ω or ∞</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part 7
Trial Operation and Field Settings

1. Pump Down Operation ... 247
2. Forced Cooling Operation .. 248
3. Wiring Error Check Function ... 249
4. Trial Operation ... 251
 4.1 RA Indoor Unit ... 251
 4.2 SA Indoor Unit ... 253
5. Field Settings ... 256
 5.1 RA Indoor Unit ... 256
 5.2 SA Indoor Unit ... 262
 5.3 Outdoor Unit ... 274
1. Pump Down Operation

Outline
In order to protect the environment, be sure to conduct pump down operation when relocating or disposing of the unit.

Details
1. Remove the valve caps from the liquid stop valve and the gas stop valve.
2. Carry out forced cooling operation.
3. After 1 - 2 minutes, close the liquid stop valve with a hexagonal wrench.
4. After 3 - 4 minutes, close the gas stop valve and stop the forced cooling operation.
5. Attach the valve cap once procedures are complete.

Reference
Refer to page 248 for details of forced cooling operation.
2. Forced Cooling Operation

Outline
The forced cooling operation is allowed when both the following conditions are met.
1. The outdoor unit is not abnormal and not in the 3-minute standby mode.
2. The outdoor unit is not operating.

Protection functions have priority over all other functions during forced cooling operation.

Procedure
1. Turn off the power.
2. Remove the right side panel (6 screws) and the shield cover (2 screws).
3. Remove the cover of service monitor PCB (1 screw).
4. Switch SW5 and SW6 to off.
5. Turn the operation mode switch (SW2) to COOL.
6. Screw the cover of service monitor PCB back on (1 screw).
7. Attach the shield cover (2 screws) and the right side panel (6 screws).
8. Turn on the power.
9. Press the forced operation switch (SW1) above the service monitor PCB cover. (The operation will start.)
 • Forced cooling operation will stop automatically after about 8 minutes.
 To stop the operation, press the forced operation switch (SW1) again.
3. Wiring Error Check Function

Outline
Wiring error check function is designed for the microcomputer to correct wiring errors itself. If local wiring is unclear in the case of buried piping, for example, just press the wiring error check switch on the outdoor unit. Even if the connections for Room A and Room B are confused, the system may run without a hassle.

Note that this check function does not work in the following cases.
- For 3-minute standby period after the power is turned on or after the compressor has stopped.
- When the outdoor temperature is below 5°C (41°F).
- If the indoor unit is in trouble (also in case of all-room transmission failure).

When the piping and wiring are perfect, there is no need to use this function.

Procedure
1. Press the wiring error check switch (SW3) on the service monitor PCB of the outdoor unit, and the wiring error check function is activated.
2. In about 15 ~ 25 minutes, the check finishes automatically.
3. When the check is over, the service monitor LED indicators start blinking.

<table>
<thead>
<tr>
<th>LED</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>Judgment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status</td>
<td>Blinking one after another</td>
<td>Self-correction completed</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>All blinking</td>
<td>Self-correction impossible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Any of the LEDs stay on</td>
<td>Emergency stop</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Self-correction complete…The LED indicators 1 - 5 blink one after another.
- Self-correction impossible…The LED indicators blink all at the same time.
 - Transmission failure occurs at any of the indoor units.
 - The indoor unit heat exchanger thermistor is disconnected.
 - An indoor unit is in trouble (if a trouble occurs during the wiring error checking).
- Emergency stop…If any of the LED indicators stays on, follow the diagnostic procedure.
Details

- Wiring error check is realized by feeding refrigerant one by one through each piping port and detecting indoor heat exchanger temperature with the indoor heat exchanger thermistor in each room to see if the temperature changes in correct order.
- During wiring error check, freezing (cracking) noise may be heard from the indoor unit. This is not a malfunction. The noise is generated by the heat exchanger that is cooled below 0°C (32°F) to make temperature change more visible.
- Indoor fan motor turns on and off during wiring error check.

Wiring error check result is indicated using service monitor LEDs when all the checking procedures are completed. LEDs stop blinking when the system returns to the normal operation.

In a multi system with 2 ports (Port A and Port B), LED 1 and LED 2 indicate wiring to Room A and Room B respectively. The LED that blinks first and second indicate piping Port A and Port B respectively.

Ex: Suppose the LED indicators are blinking as follows.

![LED indicators diagram]

In this example, Port A and wiring to Room B are connected to the same room and Port B and wiring to Room A are connected to another room. Incorrect wiring is then corrected automatically.

![Wiring diagram]

Notes

1. Wrongly connected liquid and gas pipes cannot be self-corrected. Be sure to make the liquid pipe and the gas pipe in pairs.
2. To cancel the wiring error check procedure halfway, press the wiring error check switch again. In this case, the memory of the microcomputer returns to its initial status (Room A wiring → Port A piping, Room B wiring → Port B piping).
3. When replacing the outdoor unit PCB, be sure to use this function.
4. Make the priority room setting after wiring error check. If you set the priority room before wiring error check, the prioritized room may be changed after self-correction.
4. Trial Operation
4.1 RA Indoor Unit

Outline
Carry out the trial operation in accordance with the operation manual to ensure that all functions and parts, such as flap movement, are working properly.

Trial operation should be carried out in either cooling or heating operation.

Procedure
1. Measure the power supply voltage and make sure that it falls within the specified range.
2. In cooling operation, select the lowest programmable temperature (18°C (64°F)); in heating operation, select the highest programmable temperature (30°C (86°F)).
 - Trial operation may be disabled in either operation mode depending on the room temperature.
 - After trial operation is complete, set the temperature to a normal level (26 ~ 28°C (78 ~ 82°F) in cooling, 20 ~ 24°C (68 ~ 75°F) in heating).
 - For protection, the system does not start for 3 minutes after it is turned off.

ARC452 Series
1. Press ON/OFF button to turn on the system.
2. Press both of TEMP buttons and MODE button at the same time.
3. Press MODE button twice.
 - ‘7’ appears on the display to indicate that trial operation is selected.
4. Press MODE button and select the operation mode.
5. Trial operation terminates in about 30 minutes and switches into normal mode.
 - To quit trial operation, press ON/OFF button.
ARC466 Series

1. Press **On/Off** button to turn on the system.
2. Press the center of **Temp** button and **Mode** button at the same time.
3. Select TAS (trial operation) with **Temp ▲** or **Temp ▼** button.
4. Press **Mode** button to start the trial operation.
5. Press **Mode** button and select operation mode.
6. Trial operation terminates in about 30 minutes and switches into normal mode.
 To quit trial operation, press **On/Off** button.

Test Items

<table>
<thead>
<tr>
<th>Test items</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and outdoor units are installed properly on solid bases.</td>
<td>Fall, vibration, noise</td>
</tr>
<tr>
<td>No refrigerant gas leaks.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Refrigerant gas and liquid pipes and indoor drain hose extension are thermally insulated.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>Draining line is properly installed.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>System is properly grounded.</td>
<td>Electrical leakage</td>
</tr>
<tr>
<td>The specified wires are used for inter-unit wiring.</td>
<td>Inoperative or burn damage</td>
</tr>
<tr>
<td>Indoor or outdoor unit’s air inlet or air outlet has clear path of air.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Indoor unit properly receives remote controller commands.</td>
<td>Inoperative</td>
</tr>
<tr>
<td>The heat pump or cooling only mode is selectable with the DIP switch of the remote controller</td>
<td>Remote controller malfunctioning</td>
</tr>
</tbody>
</table>

Note

The test items above are for CTXS, FTXS series as representative. Refer to the installation manual for the other series.
4.2 SA Indoor Unit

Outline
- Make sure to install the decoration panel before carrying out trial operation if the wireless remote controller is used (FFQ series only).
- Trial operation should be carried out in either cooling or heating operation.

1. Measure the supply voltage and make sure that it is within the specified range.
2. In cooling operation, select the lowest programmable temperature; in heating operation, select the highest programmable temperature.
3. Carry out the trial operation following the instructions in the operation manual to ensure that all functions and parts, such as the movement of the flaps, are working properly.
 - To protect the air conditioner, restart operation is disabled for 3 minutes after the system has been turned off.
4. After trial operation is complete, set the temperature to a normal level (26°C to 28°C (78°F to 82°F) in cooling operation, 20°C to 24°C (68°F to 75°F) in heating operation).

Caution
When performing field settings or trial operation without attaching the decoration panel, do not touch the drain pump. This may cause electric shock. After finishing the construction of refrigerant piping, drain piping, and electric wiring, conduct trial operation accordingly to protect the unit (FFQ series only).

Procedure
When operating the air conditioner in cooling operation in winter, or heating operation in summer, set it to the trial operation mode using the following method.
With BRC1E73 Wired Remote Controller

1. Set to COOL or HEAT operation using the remote controller.

2. Press and hold Cancel button for 4 seconds or longer. Service settings menu is displayed.

3. In the case of a model having airflow direction function, select Test Operation in the service settings menu, and press Menu/OK button. Basic screen returns and “Test Operation” is displayed at the bottom.

4. Press On/Off button within 10 seconds, and the test operation starts. Monitor the operation of the indoor unit for a minimum of 10 minutes. During test operation, the indoor unit will continue to cool/heat regardless of the temperature setpoint and room temperature.
 • In the case of above-mentioned procedures 3 and 4 in reverse order, test operation can start as well.

5. Press Menu/OK button in the basic screen. Main menu is displayed.

6. Select Airflow Direction in the main menu and press Menu/OK button. Check that airflow direction is actuated according to the setting. For operation of airflow direction setting, see the operation manual.

7. After the operation of airflow direction is confirmed, press Menu/OK button. Basic screen returns.

8. Press and hold Cancel button for 4 seconds or longer in the basic screen. Service settings menu is displayed.

9. Select Test Operation in the service settings menu, and press Menu/OK button. Basic screen returns and normal operation is conducted.
 • Test operation will stop automatically after 15 ~ 30 minutes. To stop the operation, press On/Off button.

10. If the decoration panel has not been installed, turn off the power after the test operation (FFQ series only).
With BRC082A43, BRC082A41W, BRC082A42W(S) Wireless Remote Controller

1. Press \(\text{COOL} \) button and select the COOL or HEAT operation.

2. Press \(\text{TEST} \) button twice. “TEST” is displayed.

3. Press \(\text{ON/OFF} \) button within 10 seconds, and the test operation starts.

 Monitor the operation of the indoor unit for a minimum of 10 minutes. During test operation, the indoor unit will continue to cool/heat regardless of the temperature setpoint and room temperature.

 In the case of above-mentioned procedures (1) and (2) in reverse order, test operation can start as well.

 Test operation will stop automatically after 15 ~ 30 minutes.

 To stop the operation, press \(\text{ON/OFF} \) button.

 Some of the functions cannot be used in the test operation mode.

Test Items

<table>
<thead>
<tr>
<th>Test items</th>
<th>Symptoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and outdoor units are installed securely.</td>
<td>Fall, vibration, noise</td>
</tr>
<tr>
<td>Is the outdoor unit fully installed?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>No refrigerant gas leaks.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Refrigerant gas and liquid pipes and indoor drain hose extension are thermally insulated.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>Draining line is properly installed.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>Does the power supply voltage correspond to that shown on the name plate?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>Only specified wires are used for all wiring, and all wires are connected correctly.</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>System is properly grounded.</td>
<td>Electrical leakage</td>
</tr>
<tr>
<td>Is wiring size according to specifications?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>Is something blocking the air outlet or inlet of either the indoor or outdoor units?</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Are refrigerant piping length and additional refrigerant charge noted down?</td>
<td>The refrigerant charge in the system is not clear</td>
</tr>
<tr>
<td>Pipes and wires are connected to the corresponding connection ports/terminal blocks for the connected unit.</td>
<td>No cooling/heating</td>
</tr>
<tr>
<td>Stop valves are opened.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Check that the connector of the lead wires of the decoration panel is connected securely.</td>
<td>Louvers do not move</td>
</tr>
<tr>
<td>Indoor unit properly receives wireless remote control commands.</td>
<td>No operation</td>
</tr>
</tbody>
</table>
5. Field Settings

5.1 RA Indoor Unit

5.1.1 Model Type Settings

ARC452A21, ARC452A23
- The remote controller is common to the heat pump model and cooling only model.
- Make sure the DIP switch is set to the left side. The heating operation will not be available when the DIP switch is set to the right side.

ARC466A21, ARC466A36
- The remote controller is common to the heat pump model and cooling only model.

Caution
Replace the remote controller if you cut a jumper on the left side. The heating operation will not be available when the jumper on the left side is cut.
5.1.2 Temperature Display Switch

You can select Fahrenheit or Celsius for temperature display.

ARC452A21, ARC452A23
- Press TEMP ▲ and TEMP ▼ buttons at the same time for 5 seconds to change the unit of temperature display.

ARC466A21, ARC466A36
- Press the upper side of Temp button and On button at the same time for 5 seconds to change the unit of temperature display.
5.1.3 When 2 Units are Installed in 1 Room

Outline

When 2 indoor units are installed in 1 room, 1 of the 2 indoor units and the corresponding wireless remote controller can be set for different address. Both the indoor unit PCB and the wireless remote controller need alteration.

The method of address setting varies depending on the type of indoor unit and the series of wired remote controller. Refer to the following pages for the appropriate indoor unit and wireless remote controller.

FTXR, CTXG, CTXS, FTXS Series

1. Remove the front grille.
2. Remove the electrical box.
3. Remove the shield plate of the electrical box.
4. Cut the address setting jumper JA on the PCB.

FTXR, CTXG Series

CTXS07LVJU, FTXS09/12LVJU

FTXS15/18/24LVJU

Caution

Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
FDXS, CDXS Series

- Cut the jumper JA on PCB.

Caution

Replace the PCB if you cut a jumper unintentionally.

Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

FVXS Series

1. Remove the front grille.
2. Lift the sensor PCB fixing plate and remove the front shield plate.
3. Disconnect the connectors S1, S41, S42.
4. Remove the electric box (1 screw).
5. Pull out the indoor heat exchanger thermistor.
6. Remove the shield plate (8 tabs).
7. Cut the address setting jumper JA on the indoor unit PCB.
Caution
Replace the PCB if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

Wireless Remote Controller

1. Remove the cover and take it off.
2. Cut the address setting jumper.

ARC452 series

![ARC452 series diagram](R12065)

ARC466 series

![ARC466 series diagram](R18416)

* Do not cut the left jumper.

Caution
Replace the remote controller if you cut a jumper unintentionally.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
5.1.4 Jumper and Switch Settings

FTXR series

<table>
<thead>
<tr>
<th>Jumper on indoor unit PCB</th>
<th>Function</th>
<th>When connected (factory setting)</th>
<th>When cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB</td>
<td>Fan speed setting when compressor stops for thermostat OFF. (effective only at cooling operation)</td>
<td>The fan stops.</td>
<td>Fan speed setting; Remote controller setting</td>
</tr>
<tr>
<td>JC</td>
<td>Power failure recovery function</td>
<td>Auto-restart</td>
<td>The unit does not resume operation after recovering from a power failure. Timer settings are cleared.</td>
</tr>
</tbody>
</table>

CTXG, CTXS, FTXS, FDXS, CDXS, FVXS series

<table>
<thead>
<tr>
<th>Jumper on indoor unit PCB</th>
<th>Function</th>
<th>When connected (factory setting)</th>
<th>When cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>JB</td>
<td>Fan speed setting when compressor stops for thermostat OFF. (effective only at cooling operation)</td>
<td>Fan speed setting; Remote controller setting</td>
<td>The fan stops.</td>
</tr>
<tr>
<td>JC</td>
<td>Power failure recovery function</td>
<td>Auto-restart</td>
<td>The unit does not resume operation after recovering from a power failure. Timer settings are cleared.</td>
</tr>
</tbody>
</table>

FVXS series only

<table>
<thead>
<tr>
<th>Switch on indoor unit PCB</th>
<th>Function</th>
<th>OFF (factory setting)</th>
<th>ON</th>
</tr>
</thead>
<tbody>
<tr>
<td>SW2-4</td>
<td>Upward airflow limit setting</td>
<td>Exposed or half embedded installation</td>
<td>Set the switch to ON position when you install the indoor unit embedded in the wall to avoid condensation.</td>
</tr>
</tbody>
</table>

Reference

For the location of the jumper, refer to the following pages.
FTXR, CTXG: page 37
CTXS07LVJU, FTXS09/12LVJU: page 39
FTXS15/18/24LVJU: page 41
FDXS, CDXS: page 43
FVXS: page 45
5.2 SA Indoor Unit

5.2.1 How to Change the Field Settings

Outline

If optional accessories are mounted on the indoor unit, the indoor unit setting may have to be changed. Refer to the instruction manual for each optional accessory.

Note

When using 2 remote controllers for 1 indoor unit, change the field settings from MAIN remote controller. Note that the field settings can not be set from SUB remote controller.

Procedure

BRC1E73 Wired Remote Controller

1. Press and hold Cancel button for 4 seconds or longer. Service settings menu is displayed.

2. Select Field Settings in the Service Settings menu, and press Menu/OK button. Field settings screen is displayed.
3. Highlight the mode, and select desired “Mode No.” by using ▲▼ (Up/Down) button.

4. In the case of setting per indoor unit during group control (When Mode No. such as 20, 22, 23, 25 are selected), highlight the unit No. and select “Indoor unit No.” to be set by using ▲▼ (Up/Down) button. (In the case of group setting, this operation is not needed.)

In the case of individual setting per indoor unit, current settings are displayed. And, SECOND CODE NO. “-” means no function.

5. Highlight SECOND CODE NO. of the FIRST CODE NO. to be changed, and select desired “SECOND CODE NO.” by using ▲▼ (Up/Down) button. Multiple identical mode number settings are available.

In the case of setting for all indoor units in the remote control group, available SECOND CODE NO. is displayed as “∗” which means it can be changed. When SECOND CODE NO. is displayed as “-”, there is no function.

6. Press Menu/OK button. Setting confirmation screen is displayed.

7. Select Yes and press Menu/OK button. Setting details are determined and field settings screen returns.

8. In the case of multiple setting changes, repeat 3 to 7.

9. After all setting changes are completed, press Cancel button twice.

10. Backlight goes out, and [Checking the connection. Please stand by.] is displayed for initialization. After the initialization, the basic screen returns.
To set the field settings, you have to change:

- Mode No.
- First code No.
- Second code No.

1. When in normal mode, hold down \textit{INSPECTION/TEST} button for at least 4 seconds to enter the Field Set mode.
2. Select the desired Mode No. with \textit{MODE} button.
3. Press \textit{UP} button and select the First code No.
4. Press \textit{DOWN} button and select the Second code No.
5. Press \textit{RESERVE} button to confirm the settings.
6. Press \textit{INSPECTION/TEST} button to quit the Field Set mode and to return to normal display again.
5.2.2 Overview of Field Settings for FFQ Series

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>First Code No.</th>
<th>Description of setting</th>
<th>Second Code No.</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>Filter cleaning sign interval</td>
<td>Longlife filter</td>
<td>Light</td>
<td>Approx. 2,500 hrs.</td>
<td>Heavy</td>
<td>Approx. 1,250 hrs.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>Remote controller thermistor</td>
<td>Enabled</td>
<td></td>
<td>Disabled</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Filter cleaning sign</td>
<td>Display</td>
<td></td>
<td>No display</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>Optional accessories output selection (field selection of output for adaptor for wiring)</td>
<td>Compressor</td>
<td></td>
<td>Operation output</td>
<td>Error output</td>
<td>Outdoor air intake</td>
<td>Presence sensor</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>High air outlet velocity (for high ceiling applications)</td>
<td>≤ 2.7 m</td>
<td></td>
<td>(≤ 8-7/8 ft)</td>
<td>2.7 ~ 3.0 m</td>
<td>(8-7/8~9-13/16 ft)</td>
<td>3.0 ~ 3.5 m</td>
<td>(9-13/16~11-1/2 ft)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>Selection of airflow direction (setting for when a blocking pad kit has been installed)</td>
<td>4-way flow</td>
<td></td>
<td>3-way flow</td>
<td>2-way flow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td>Drain pump operation with humidifying</td>
<td>Not equipped</td>
<td></td>
<td>Equipped</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

☆ Factory Setting

Note(s)

Any function that is not available on the indoor unit is not displayed.
5.2.3 Overview of Field Settings for FDMQ Series

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>First Code No.</th>
<th>Description of setting</th>
<th>Second Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Filter cleaning sign interval (used to change filter cleaning display interval according to filter contamination)</td>
<td>01 02 03 04 05 06</td>
</tr>
<tr>
<td>10 (20)</td>
<td></td>
<td>Longlife filter Light</td>
<td>Approx. 2,500 hrs. Heavy</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>Standard filter Light</td>
<td>Approx. 200 hrs. Heavy</td>
</tr>
<tr>
<td>11 (21)</td>
<td>0</td>
<td>Filter cleaning sign (used to set filter cleaning display ON/OFF)</td>
<td>Display No display</td>
</tr>
<tr>
<td>13 (23)</td>
<td>6</td>
<td>External static pressure</td>
<td>Refer to the table below.</td>
</tr>
</tbody>
</table>

★ Factory Setting

Note(s)
- The Second Code No. is factory set to "01".
- Do not use any settings not listed in the table.
- For group control with a wireless remote controller, initial settings for all the indoor units of the group are equal.
- For group control, refer to the installation manual attached to the indoor unit for group control.

External Static Pressure Settings

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>09/12 Class 15/18/24 Class</td>
</tr>
<tr>
<td>13 (23)</td>
<td>6</td>
<td>03 04 05 06 07 08 09 10 11 12 13 14 15</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>03 04 05 06 07 08 09 10 11 12 13 14 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>03</td>
<td>30 Pa (0.12 inH2O)</td>
</tr>
<tr>
<td>04</td>
<td>40 Pa (0.16 inH2O)</td>
</tr>
<tr>
<td>05 ★</td>
<td>50 Pa (0.20 inH2O) ★</td>
</tr>
<tr>
<td>06</td>
<td>60 Pa (0.24 inH2O)</td>
</tr>
<tr>
<td>07</td>
<td>70 Pa (0.28 inH2O)</td>
</tr>
<tr>
<td>08</td>
<td>80 Pa (0.32 inH2O)</td>
</tr>
<tr>
<td>09</td>
<td>90 Pa (0.36 inH2O)</td>
</tr>
<tr>
<td>10</td>
<td>100 Pa (0.40 inH2O)</td>
</tr>
<tr>
<td>11</td>
<td>110 Pa (0.44 inH2O)</td>
</tr>
<tr>
<td>12</td>
<td>120 Pa (0.48 inH2O)</td>
</tr>
<tr>
<td>13</td>
<td>130 Pa (0.52 inH2O)</td>
</tr>
<tr>
<td>14</td>
<td>140 Pa (0.56 inH2O)</td>
</tr>
<tr>
<td>15</td>
<td>150 Pa (0.60 inH2O)</td>
</tr>
</tbody>
</table>

★ Factory Setting
5.2.4 MAIN/SUB Setting when Using 2 Wired Remote Controllers

Outline
The MAIN/SUB setting is necessary when 1 indoor unit is controlled by 2 remote controllers. When you use 2 remote controllers, set one to MAIN and the other to SUB.

Details
1. The following message is displayed after power-on.
 - Checking the connection.
 - Please stand by.
 When the above message is displayed, the backlight will not be ON.
 [In the case that 1 indoor unit is controlled by 2 remote controllers:]
 Make sure to set the sub remote controller when the above message is displayed.
 Hold Mode button for 4 seconds or longer to set.
 When the display is changed from “Main RC” to “Sub RC”, the setting is completed.

2. Basic screen is displayed.
5.2.5 MAIN/SUB and Address Setting for Wireless Remote Controller for FDMQ Series

Outline

- If setting multiple wireless remote controllers to operate in one room, perform address setting for the receiver and the wireless remote controller.
- If using both a wired remote controller and a wireless remote controller with 1 indoor unit, change the MAIN/SUB switch of the signal receiver PCB.

Signal Receiver PCB Setting

MAIN/SUB switch
Set the MAIN/SUB setting switch (SS1) on the signal receiver PCB to SUB.

<table>
<thead>
<tr>
<th>MAIN/SUB setting switch (SS1)</th>
<th>MAIN</th>
<th>SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAIN/SUB switch (SS1)</td>
<td>M</td>
<td>M</td>
</tr>
<tr>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
</tbody>
</table>

Wireless address switch
Set the address setting switch (SS2) on the signal receiver PCB according to the table below.

<table>
<thead>
<tr>
<th>Address setting switch (SS2)</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address setting switch (SS2)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Address setting switch (SS2)</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>
Wireless Remote Controller Address

Factory set is 1. Change the wireless remote controller address setting by the following steps, if necessary.

1. Hold down button and TEST button at the same time for at least 4 seconds to enter the field setting mode. (SETTING is indicated on the display).
2. Press FAN button and select display setting (or). Each time the button is pressed, the display switches between and .
3. Press button and button to set the address.

![Diagram](image.png)

Address can be set from 1 ~ 6, but set it to 1 ~ 3 and to same address as the receiver. The receiver does not work with address 4 ~ 6.

4. Press RESERVE button to confirm the setting.
5. Hold down TEST button to quit the field setting mode and return to the normal display.
Multiple Settings

When the indoor unit is controlled by an outside controller (central remote controller, etc.), the indoor unit sometimes does not respond to ON/OFF command or temperature setting command from the wireless remote controller. Check what setting the customer needs and make the multiple setting as shown below.

<table>
<thead>
<tr>
<th>Remote Controller</th>
<th>Indoor Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple settings</td>
<td>Remote controller display</td>
</tr>
<tr>
<td>R: Standard</td>
<td>All items displayed.</td>
</tr>
<tr>
<td>S: Multi System</td>
<td>Operations remain displayed shortly after execution</td>
</tr>
</tbody>
</table>

After Setting

Stick the Unit No. label on the receiver and the back of the wireless remote controller.

Note(s)

Set the Unit No. of the receiver and the wireless remote controller to be the equal. If the settings differ, the signal from the remote controller cannot be transmitted.
5.2.6 MAIN/SUB and Address Setting for Wireless Remote Controller for FFQ Series

Outline

- If setting multiple wireless remote controllers to operate in one room, perform address setting for the receiver and the wireless remote controller.
- If using both a wired remote controller and a wireless remote controller with 1 indoor unit, change the MAIN/SUB switch of the transmitter board.

Transmitter Board

![Transmitter Board Diagram]

MAIN/SUB switch

When using both a wired and a wireless remote controller for 1 indoor unit, the wired controller should be set to MAIN. Therefore, set the MAIN/SUB switch (SS1) of the transmitter board to SUB.

<table>
<thead>
<tr>
<th>MAIN/SUB setting switch (SS1)</th>
<th>MAIN</th>
<th>SUB</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R24062)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(R24063)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wireless address switch

Set the wireless address setting switch (SS2) on the transmitter board according to the table below.

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address setting switch (SS2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S1935)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S1936)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(S1937)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Wireless Remote Controller Address

Factory set is 1. Change the wireless remote controller address setting by the following steps, if necessary.

1. Hold down button and TEST button at the same time for at least 4 seconds to enter the field setting mode. (SETTING is indicated on the display).
 - Press button and select display setting (or). Each time the button is pressed, the display switches between and .
2. Press button and button to set the address.
 - Address can be set from 1 ~ 6, but set it to 1 ~ 3 and to same address as the transmitter board. The transmitter board does not work with address 4 ~ 6.
3. Press button to confirm the setting.
4. Hold down ON/OFF button to quit the field setting mode and return to the normal display.
Multiple Settings

When the indoor unit is controlled by an outside controller (central remote controller, etc.), the indoor unit sometimes does not respond to ON/OFF command or temperature setting command from the wireless remote controller. Check what setting the customer needs and make the multiple setting as shown below.

<table>
<thead>
<tr>
<th>Remote Controller</th>
<th>Indoor Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multiple settings</td>
<td>Remote controller display</td>
</tr>
<tr>
<td>a: Standard</td>
<td>All items displayed.</td>
</tr>
<tr>
<td>b: Multi System</td>
<td>Operations remain displayed shortly after execution</td>
</tr>
</tbody>
</table>

After Setting

Affix corresponding unit number labels onto both air outlet of the decoration panel and onto back of the wireless remote controller.

Note(s)

Set the Unit No. of the receiver and the wireless remote controller to be the equal. If the settings differ, the signal from the remote controller cannot be transmitted.
5.3 Outdoor Unit

5.3.1 Priority Room Setting

Outline

The indoor unit for which priority room setting is applied takes priority in the following cases.

- **Operation mode priority**
 The operation mode of the prioritized room takes precedence. For example, when the prioritized indoor unit starts cooling operation, the other indoor units which have been in heating operation enter the standby mode. Heating operation will resume if the prioritized indoor unit stops cooling operation.

- **Priority during POWERFUL operation**
 The electronic expansion valves are controlled to provide more capacity to the prioritized room and the capacities for the other indoor units will be slightly reduced.

- **OUTDOOR UNIT QUIET operation priority**
 When the OUTDOOR UNIT QUIET operation is selected in the prioritized room, the outdoor unit runs quietly.
 Without priority room setting, OUTDOOR UNIT QUIET operation starts only when the function is set for all the operating indoor units.

Procedure

1. Turn the circuit breaker off before changing the setting.
2. Turn on the one of the switches of the SW4 on the service monitor PCB.
 Only one room can be set as the priority room.
3. Turn the power on.
5.3.2 COOL/HEAT Mode Lock

Use the S15 connector to set the unit to cooling only or heating only. Setting to heating only (H): short-circuit the pins 1 and 3 of the connector S15. Setting to cooling only (C): short-circuit the pins 3 and 5 of the connector S15.

The following specifications apply to the connector housing and pins.

- JST products:
 - Housing: VHR-5N
 - Pin: SVH-21T-1, 1

Note(s) Forced operation is also possible in cooling/heating mode
5.3.3 NIGHT QUIET Mode

Outline
If NIGHT QUIET mode is to be used, initial settings must be made when the unit is installed.
Explain the function of NIGHT QUIET mode, as described below, to the customer, and confirm whether or not the customer wants to use NIGHT QUIET mode.

NIGHT QUIET mode function reduces operating noise of the outdoor unit at nighttime. This function is useful if the customer is worried about the effects of the operating noise on the neighbors. However, if NIGHT QUIET mode is running, cooling capacity is reduced.

Procedure
Turn on the SW6-1 on the service monitor PCB of the outdoor unit.
6. Silicone Grease on Power Transistor/Diode Bridge

Outline
Apply the specified silicone grease to the heat radiation part of a power transistor/diode bridge when you replace an outdoor unit PCB. The silicone grease encourages the heat radiation of a power transistor/diode bridge.

Details
1. Wipe off the old silicone grease on the refrigerant pipe completely.
2. Apply the silicone grease on the heat sink evenly. See the illustrations below for examples of application.
3. Tighten the screws of cover.
4. Make sure that the heat radiation parts are firmly contacted to refrigerant pipe.

Note(s)
Smoke emission may be caused by bad heat radiation when the silicone grease is not appropriately applied.

- OK: Evenly applied

- NG: Not evenly applied

- NG: Foreign matter is stuck.
Part 8
Appendix

1. Piping Diagrams .. 279
 1.1 Indoor Unit .. 279
 1.2 Outdoor Unit .. 282
2. Wiring Diagrams ... 283
 2.1 Indoor Unit ... 283
3. Outdoor Unit ... 290
4. Operation Limit .. 292
1. Piping Diagrams

1.1 Indoor Unit

FTXR09/12TVJUW(S), CTXG09/12QVJUW(S)

FTXR18TVJUW(S), CTXG18QVJUW(S)

CTXS07LVJU, FTXS09/12LVJU

FTXS15/18LVJU
1.2 Outdoor Unit

5MXS48TVJU

4MXL36TVJU
2. Wiring Diagrams

2.1 Indoor Unit

FTXR09/12/18TVJUW(S), CTXG09/12/18QVJUW(S)

A1P: Control PCB
A2P: Display/signal receiver PCB
A3P: INTELLIGENT EYE sensor PCB

Refer to page 37 for Printed Circuit Board Connector Wiring Diagram.

NOTE When the main power is turned off and then back on again, operation will resume automatically.
Note

PCB1: Control PCB
PCB2: Signal receiver PCB
PCB3: Display PCB
PCB4: INTELLIGENT EYE sensor PCB

Refer to page 39 for Printed Circuit Board Connector Wiring Diagram.
FTXS15/18/24LVJU

Note

- PCB1: Control PCB
- PCB2: Signal receiver PCB
- PCB3: Display PCB
- PCB4: INTELLIGENT EYE sensor PCB

Refer to page 41 for Printed Circuit Board Connector Wiring Diagram.
Note

A1P: Control PCB
A2P: Display/signal receiver PCB
Refer to page 43 for Printed Circuit Board Connector Wiring Diagram.
FVXS09/12/15/18NVJU

Note

PCB1: Sensor PCB
PCB2: Control PCB
PCB3: Service PCB
PCB4: Display/signal receiver PCB
Refer to page 45 for Printed Circuit Board Connector Wiring Diagram.
A1P: Control PCB
A2P: Indoor fan PCB
Refer to page 47 for Printed Circuit Board Connector Wiring Diagram.
Note

A1P: Control PCB
A2P: Transmitter board for wireless remote controller
A3P: Receiver for wireless remote controller
A4P: Thermopile sensor
A5P: Pyroelectric sensor

Refer to page 49 for Printed Circuit Board Connector Wiring Diagram.
3. Outdoor Unit

5MXS48TVJU

Note(s)

PCB1: Main PCB
PCB2: Service monitor PCB
Refer to page 54 for Printed Circuit Board Connector Wiring Diagram.
4MXL36TVJU

WIRING DIAGRAM

Note(s)
- PCB1: Main PCB
- PCB2: Service monitor PCB
- Refer to page 54 for Printed Circuit Board Connector Wiring Diagram.
4. Operation Limit

5MXS48TVJU

Cooling

Heating

Notes:
The graphs are based on the following conditions,
- Equivalent piping length 25 ft
- Level difference 0 ft
- Air flow rate High

4MXL36TVJU

Cooling

Heating

Notes:
The graphs are based on the following conditions,
- Equivalent piping length 25 ft
- Level difference 0 ft
- Air flow rate High
Caution on product corrosion

1. Air conditioners should not be installed in areas where corrosive gases, such as acid gas or alkaline gas, are produced.
2. If the outdoor unit is to be installed close to the sea shore, direct exposure to the sea breeze should be avoided. If you need to install the outdoor unit close to the sea shore, contact your local distributor.